Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impacts of climate change on energy systems in global and regional scenarios


Although our knowledge of climate change impacts on energy systems has increased substantially over the past few decades, there remains a lack of comprehensive overview of impacts across spatial scales. Here, we analyse results of 220 studies projecting climate impacts on energy systems globally and at the regional scale. Globally, a potential increase in cooling demand and decrease in heating demand can be anticipated, in contrast to slight decreases in hydropower and thermal energy capacity. Impacts at the regional scale are more mixed and relatively uncertain across regions, but strongest impacts are reported for South Asia and Latin America. Our assessment shows that climate impacts on energy systems at regional and global scales are uncertain due partly to the wide range of methods and non-harmonized datasets used. For a comprehensive assessment of climate impacts on energy, we propose a consistent multi-model assessment framework to support regional-to-global-scale energy planning.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Conceptual framework of our assessment of climate change impacts on energy systems, based on past studies.
Fig. 2: Number of papers published from 2002 to 2019 about climate change impacts on renewable energy supply, energy demand and integrating energy systems.
Fig. 3: Climate change impacts on energy systems.
Fig. 4: Climate change impacts on energy systems averaged across studies, presented per region from results of the reviewed studies.

Data availability

All data that support the findings of this study presented in the figures are provided in the Source Data section associated with this manuscript. Source data are provided with this paper.


  1. 1.

    Bruckner, T. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  2. 2.

    Schaeffer, R. et al. Energy sector vulnerability to climate change: a review. Energy 38, 1–12 (2012).

    Google Scholar 

  3. 3.

    Ebinger, J. & Vergara, W. Climate Impacts on Energy Systems: Key Issues for Energy Sector Adaptation (The World Bank, 2011).

  4. 4.

    Crook, J. A., Jones, L. A., Forster, P. M. & Crook, R. Climate change impacts on future photovoltaic and concentrated solar power energy output. Energ. Environ, Sci. 4, 3101–3109 (2011).

    Google Scholar 

  5. 5.

    Owusu, P. A. & Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent. Eng. 3, 1167990 (2016).

    Google Scholar 

  6. 6.

    Bartos, M. D. & Chester, M. V. Impacts of climate change on electric power supply in the Western United States. Nat. Clim. Change 5, 748–752 (2015).

    Google Scholar 

  7. 7.

    Karnauskas, K. B., Lundquist, J. K. & Zhang, L. Southward shift of the global wind energy resource under high carbon dioxide emissions. Nar. Geosci. 11, 38–43 (2018).

    Google Scholar 

  8. 8.

    Craig, M. T. et al. A review of the potential impacts of climate change on bulk power system planning and operations in the United States. Renew. Sust. Energ. Rev. 98, 255–267 (2018).

    Google Scholar 

  9. 9.

    Van Vliet, M. T. et al. Vulnerability of US and European electricity supply to climate change. Nat. Clim. Change 2, 676 (2012).

    Google Scholar 

  10. 10.

    Liu, L., Hejazi, M., Li, H., Forman, B. & Zhang, X. Vulnerability of US thermoelectric power generation to climate change when incorporating state-level environmental regulations. Nat. Ener. 2, 17109 (2017).

    Google Scholar 

  11. 11.

    Ciscar, J.-C. & Dowling, P. Integrated assessment of climate impacts and adaptation in the energy sector. Energy Econ. 46, 531–538 (2014).

    Google Scholar 

  12. 12.

    Ravestein, P., van der Schrier, G., Haarsma, R., Scheele, R. & van den Broek, M. Vulnerability of European intermittent renewable energy supply to climate change and climate variability. Renew. Sust. Ener. Rev. 97, 497–508 (2018).

    Google Scholar 

  13. 13.

    Perera, A., Nik, V. M., Chen, D., Scartezzini, J. L. & Hong, T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 5, 150–159 (2020).

    Google Scholar 

  14. 14.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  15. 15.

    Isaac, M. & van Vuuren, D. P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37, 507–521 (2009).

    Google Scholar 

  16. 16.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  17. 17.

    Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 177–123 (2018).

    Google Scholar 

  18. 18.

    Lumbroso, D., Woolhouse, G. & Jones, L. A review of the consideration of climate change in the planning of hydropower schemes in sub-Saharan Africa. Clim. Change 133, 621–633 (2015).

    Google Scholar 

  19. 19.

    Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A. & Kim, K.-H. Solar energy: potential and future prospects. Renew. Sust. Energ. Rev. 82, 894–900 (2018).

    Google Scholar 

  20. 20.

    Pryor, S. & Barthelmie, R. Climate change impacts on wind energy: a review. Renew. Sust. Energ. Rev. 14, 430–437 (2010).

    Google Scholar 

  21. 21.

    Berndes, G., Hoogwijk, M. & Van den Broek, R. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenerg. 25, 1–28 (2003).

    Google Scholar 

  22. 22.

    Li, D. H., Yang, L. & Lam, J. C. Impact of climate change on energy use in the built environment in different climate zones–a review. Energy 42, 103–112 (2012).

    Google Scholar 

  23. 23.

    Auffhammer, M. & Mansur, E. T. Measuring climatic impacts on energy consumption: a review of the empirical literature. Energy Econ. 46, 522–530 (2014).

    Google Scholar 

  24. 24.

    Mideksa, T. K. & Kallbekken, S. The impact of climate change on the electricity market: a review. Energy Policy 38, 3579–3585 (2010).

    Google Scholar 

  25. 25.

    Chandramowli, S. N. & Felder, F. A. Impact of climate change on electricity systems and markets–a review of models and forecasts. Sust. Energ. Technol. Assess. 5, 62–74 (2014).

    Google Scholar 

  26. 26.

    Mikellidou, C. V., Shakou, L. M., Boustras, G. & Dimopoulos, C. Energy critical infrastructures at risk from climate change: a state of the art review. Safety Science 110, (2017).

  27. 27.

    Stanton, M. C. B., Dessai, S. & Paavola, J. A systematic review of the impacts of climate variability and change on electricity systems in Europe. Energy 109, 1148–1159 (2016).

    Google Scholar 

  28. 28.

    Cronin, J., Anandarajah, G. & Dessens, O. Climate change impacts on the energy system: a review of trends and gaps. Clim. Change 151, 79–93 (2018).

    Google Scholar 

  29. 29.

    Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303 (2005).

    Google Scholar 

  30. 30.

    Chilkoti, V., Bolisetti, T. & Balachandar, R. Climate change impact assessment on hydropower generation using multi-model climate ensemble. Renew. Energ. 109, 510–517 (2017).

    Google Scholar 

  31. 31.

    Fan, J.-L. Impacts of climate change on hydropower generation in China. Comput. Simulat. 167, 4–18 (2018).

    MathSciNet  Google Scholar 

  32. 32.

    Teotónio, C., Fortes, P., Roebeling, P., Rodriguez, M. & Robaina-Alves, M. Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: a partial equilibrium approach. Renew. Sust. Energ. Rev. 74, 788–799 (2017).

    Google Scholar 

  33. 33.

    Hamududu, B. & Killingtveit, A. Assessing climate change impacts on global hydropower. Energies 5, 305–322 (2012).

    Google Scholar 

  34. 34.

    Van Vliet, M. T., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375–380 (2016).

    Google Scholar 

  35. 35.

    Van Vliet, M. et al. Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Global Environ. Change 40, 156–170 (2016).

    Google Scholar 

  36. 36.

    Turner, S. W., Ng, J. Y. & Galelli, S. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Sci. Total Environ. 590, 663–675 (2017).

    Google Scholar 

  37. 37.

    Zhou, Y. et al. A comprehensive view of global potential for hydro-generated electricity. Energ. Environ. Sci. 8, 2622–2633 (2015).

    Google Scholar 

  38. 38.

    Raje, D. & Mujumdar, P. Reservoir performance under uncertainty in hydrologic impacts of climate change. Adv. Water Resour. 33, 312–326 (2010).

    Google Scholar 

  39. 39.

    Gaudard, L., Gilli, M. & Romerio, F. Climate change impacts on hydropower management. Water Resource. Manag. 27, 5143–5156 (2013).

    Google Scholar 

  40. 40.

    Mohor, G. S., Rodriguez, D. A., Tomasella, J. & Júnior, J. L. S. Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant. J. Hydrol. Reg. Studies 4, 41–59 (2015).

    Google Scholar 

  41. 41.

    Fant, C., Schlosser, C. A. & Strzepek, K. The impact of climate change on wind and solar resources in southern Africa. Appl. Energy 161, 556–564 (2016).

    Google Scholar 

  42. 42.

    Wachsmuth, J. et al. How will renewable power generation be affected by climate change? The case of a Metropolitan Region in Northwest Germany. Energy 58, 192–201 (2013).

    Google Scholar 

  43. 43.

    Jerez, S. et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 6, 10014 (2015).

    Google Scholar 

  44. 44.

    Bartók, B. et al. Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe. Climate Dynam. 49, 2665–2683 (2017).

    Google Scholar 

  45. 45.

    Davy, R., Gnatiuk, N., Pettersson, L. & Bobylev, L. Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea. Renew. Sust. Energ. Rev. 81, 1652–1659 (2017).

    Google Scholar 

  46. 46.

    Carvalho, D., Rocha, A., Gómez-Gesteira, M. & Santos, C. S. Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renew. Energ. 101, 29–40 (2017).

    Google Scholar 

  47. 47.

    Hueging, H., Haas, R., Born, K., Jacob, D. & Pinto, J. G. Regional changes in wind energy potential over Europe using regional climate model ensemble projections. J. Appl. Meteorol. Climatol. 52, 903–917 (2013).

    Google Scholar 

  48. 48.

    Tobin, I. et al. Vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming. Environ. Res. Lett. 13, 044024 (2018).

    Google Scholar 

  49. 49.

    Vautard, R. et al. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms. Nat. Commun. 5, 3196 (2014).

    Google Scholar 

  50. 50.

    Jerez, S. et al. Future changes, or lack thereof, in the temporal variability of the combined wind-plus-solar power production in Europe. Renew. Energy 139, 251–260 (2019).

    Google Scholar 

  51. 51.

    De Lucena, A. F. P., Szklo, A. S., Schaeffer, R. & Dutra, R. M. The vulnerability of wind power to climate change in Brazil. Renew. Energy 35, 904–912 (2010).

    Google Scholar 

  52. 52.

    Pereira, E. B., Martins, F. R., Pes, M. P., da Cruz Segundo, E. I. & Lyra, Ad. A. The impacts of global climate changes on the wind power density in Brazil. Renew. Energy 49, 107–110 (2013).

    Google Scholar 

  53. 53.

    Breslow, P. B. & Sailor, D. J. Vulnerability of wind power resources to climate change in the continental United States. Renew. Energy 27, 585–598 (2002).

    Google Scholar 

  54. 54.

    Sailor, D. J., Smith, M. & Hart, M. Climate change implications for wind power resources in the Northwest United States. Renew. Energy 33, 2393–2406 (2008).

    Google Scholar 

  55. 55.

    De Jong, P. et al. Estimating the impact of climate change on wind and solar energy in Brazil using a South American regional climate model. Renew. Energy 141, 390–401 (2019).

    Google Scholar 

  56. 56.

    Tuck, G., Glendining, M. J., Smith, P., House, J. I. & Wattenbach, M. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenerg. 30, 183–197 (2006).

    Google Scholar 

  57. 57.

    Bellarby, J., Wattenbach, M., Tuck, G., Glendining, M. J. & Smith, P. The potential distribution of bioenergy crops in the UK under present and future climate. Biomass Bioenerg. 34, 1935–1945 (2010).

    Google Scholar 

  58. 58.

    Harvey, M. & Pilgrim, S. The new competition for land: food, energy, and climate change. Food Policy 36, S40–S51 (2011).

    Google Scholar 

  59. 59.

    Kyle, P., Müller, C., Calvin, K. & Thomson, A. Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts. Earth’s Future 2, 83–98 (2014).

    Google Scholar 

  60. 60.

    Miara, A., Vörösmarty, C. J., Stewart, R. J., Wollheim, W. M. & Rosenzweig, B. Riverine ecosystem services and the thermoelectric sector: strategic issues facing the Northeastern United States. Environ. Res. Lett. 8, 025017 (2013).

    Google Scholar 

  61. 61.

    Miara, A. et al. Climate and water resource change impacts and adaptation potential for US power supply. Nat. Clim. Change 7, 793–798 (2017).

    Google Scholar 

  62. 62.

    Miara, A. et al. Climate-water adaptation for future US electricity infrastructure. Environ. Sci. Technol. 53, 14029–14040 (2019).

    Google Scholar 

  63. 63.

    Byers, E., Hall, J., Amezaga, J., O’Donnell, G. & Leathard, A. Water and climate risks to power generation with carbon capture and storage. Environ. Res. Lett. 11, 024011 (2016).

    Google Scholar 

  64. 64.

    Angeles, M. E., González, J. E. & Ramírez, N. Impacts of climate change on building energy demands in the intra-Americas region. Theoret. Appl. Climatol 133, 59–72 (2018).

    Google Scholar 

  65. 65.

    Fan, J.-L., Hu, J.-W. & Zhang, X. Impacts of climate change on electricity demand in China: an empirical estimation based on panel data. Energy 170, 880–888 (2019).

    Google Scholar 

  66. 66.

    Taseska, V., Markovska, N. & Callaway, J. M. Evaluation of climate change impacts on energy demand. Energy 48, 88–95 (2012).

    Google Scholar 

  67. 67.

    Allen, M. R., Fernandez, S. J., Fu, J. S. & Olama, M. M. Impacts of climate change on sub-regional electricity demand and distribution in the southern United States. Nat. Energy 1, 16103 (2016).

    Google Scholar 

  68. 68.

    Zhou, Y. et al. Modeling the effect of climate change on US state-level buildings energy demands in an integrated assessment framework. Appl. Energy 113, 1077–1088 (2014).

    Google Scholar 

  69. 69.

    Hadley, S. W., Erickson Iii, D. J., Hernandez, J. L., Broniak, C. T. & Blasing, T. J. Responses of energy use to climate change: a climate modeling study. Geophys. Res. Lett. 33, (2006).

  70. 70.

    Eom, J., Clarke, L., Kim, S. H., Kyle, P. & Patel, P. China’s building energy demand: long-term implications from a detailed assessment. Energy 46, 405–419 (2012).

    Google Scholar 

  71. 71.

    McFarland, J. et al. Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison. Clim. Change 131, 111–125 (2015).

    Google Scholar 

  72. 72.

    Clarke, L. et al. Effects of long-term climate change on global building energy expenditures. Energy Econ. 72, 667–677 (2018).

    Google Scholar 

  73. 73.

    Labriet, M. et al. Worldwide impacts of climate change on energy for heating and cooling. Mit. Adapt. Strat. Global Change 20, 1111–1136 (2015).

    Google Scholar 

  74. 74.

    Van Ruijven, B. J., De Cian, E. & Wing, I. S. Amplification of future energy demand growth due to climate change. Nat. Commun. 10, 2762 (2019).

    Google Scholar 

  75. 75.

    De Cian, E. & Wing, I. S. Global energy consumption in a warming climate. Environ. Res. Econ. 72, 365–410 (2019).

    Google Scholar 

  76. 76.

    Auffhammer, M., Baylis, P. & Hausman, C. H. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc. Natl Acad. Sci. USA 114, 1886–1891 (2017).

    Google Scholar 

  77. 77.

    De Cian, E., Lanzi, E. & Roson, R. Seasonal temperature variations and energy demand. Clim. Change 116, 805–825 (2013).

    Google Scholar 

  78. 78.

    Invidiata, A. & Ghisi, E. Impact of climate change on heating and cooling energy demand in houses in Brazil. Energ. Buildings 130, 20–32 (2016).

    Google Scholar 

  79. 79.

    Wang, H. & Chen, Q. Impact of climate change heating and cooling energy use in buildings in the United States. Energ. Buildings 82, 428–436 (2014).

    Google Scholar 

  80. 80.

    Hamlet, A. F., Lee, S.-Y., Mickelson, K. E. & Elsner, M. M. Effects of projected climate change on energy supply and demand in the Pacific Northwest and Washington State. Clim. Change 102, 103–128 (2010).

    Google Scholar 

  81. 81.

    Davis, L. W. & Gertler, P. J. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl Acad. Sci. USA 112, 5962–5967 (2015).

    Google Scholar 

  82. 82.

    Park, C. et al. Avoided economic impacts of energy demand changes by 1.5 and 2 °C climate stabilization. Environ. Res. Lett. 13, 045010 (2018).

    Google Scholar 

  83. 83.

    Waite, M. et al. Global trends in urban electricity demands for cooling and heating. Energy 127, 786–802 (2017).

    Google Scholar 

  84. 84.

    Morakinyo, T. E. et al. Estimates of the impact of extreme heat events on cooling energy demand in Hong Kong. Renew. Energy 142, 73–84 (2019).

    Google Scholar 

  85. 85.

    Moazami, A., Nik, V. M., Carlucci, S. & Geving, S. Impacts of future weather data typology on building energy performance–Investigating long-term patterns of climate change and extreme weather conditions. Appl. Energy 238, 696–720 (2019).

    Google Scholar 

  86. 86.

    Dirks, J. A. et al. Impacts of climate change on energy consumption and peak demand in buildings: a detailed regional approach. Energy 79, 20–32 (2015).

    Google Scholar 

  87. 87.

    D’Oca, S., Hong, T. & Langevin, J. The human dimensions of energy use in buildings: a review. Renew. Sust. Energy Rev. 81, 731–742 (2018).

    Google Scholar 

  88. 88.

    Poortinga, W., Steg, L. & Vlek, C. Values, environmental concern, and environmental behavior: a study into household energy use. Environ. Behav. 36, 70–93 (2004).

    Google Scholar 

  89. 89.

    De Cian, E., Pavanello, F., Randazzo, T., Mistry, M. N. & Davide, M. Households’ adaptation in a warming climate. Air conditioning and thermal insulation choices. Environ. Sci. Policy 100, 136–157 (2019).

    Google Scholar 

  90. 90.

    Castleton, H. F., Stovin, V., Beck, S. B. & Davison, J. B. Green roofs; building energy savings and the potential for retrofit. Energy Buildings 42, 1582–1591 (2010).

    Google Scholar 

  91. 91.

    Jones, P., Lannon, S. & Patterson, J. Retrofitting existing housing: how far, how much? Building Res. Info. 41, 532–550 (2013).

    Google Scholar 

  92. 92.

    Da Silva Soito, J. L. & Freitas, M. A. V. J. R. Amazon and the expansion of hydropower in Brazil: vulnerability, impacts and possibilities for adaptation to global climate change. Renew. Sust. Energy Rev. 15, 3165–3177 (2011).

    Google Scholar 

  93. 93.

    Cohen, S. M., Macknick, J., Averyt, K. & Meldrum, J. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion (National Renewable Energy Laboratory, 2014).

  94. 94.

    Mima, S. & Criqui, P. The costs of climate change for the European energy system, an assessment with the POLES model. Environ. Model. Ass. 20, 303–319 (2015).

    Google Scholar 

  95. 95.

    Ackerman, F. & Stanton, E. A. The Cost of Climate Change: What We’ll Pay if Global Warming Continues Unchecked (Natural Resources Defence Council, 2008).

  96. 96.

    Turner, S. W., Hejazi, M., Kim, S. H., Clarke, L. & Edmonds, J. Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy 141, 2081–2090 (2017).

    Google Scholar 

  97. 97.

    Van der Linden, P. & Mitchell, J. (eds) ENSEMBLES: Climate Change and its Impacts—Summary of Research and Results from the ENSEMBLES Project (European Environment Agency, 2009).

  98. 98.

    Rübbelke, D. & Vögele, S. Impacts of climate change on European critical infrastructures: the case of the power sector. Environ. Sci. Policy 14, 53–63 (2011).

    Google Scholar 

  99. 99.

    Pryor, S. & Barthelmie, R. Assessing the vulnerability of wind energy to climate change and extreme events. Clim. Change 121, 79–91 (2013).

    Google Scholar 

  100. 100.

    Miller, N. L., Hayhoe, K., Jin, J. & Auffhammer, M. Climate, extreme heat, and electricity demand in California. J. Appl. Meteorol. Climatol. 47, 1834–1844 (2008).

    Google Scholar 

  101. 101.

    Forzieri, G. et al. Escalating impacts of climate extremes on critical infrastructures in Europe. Global Environ. Change 48, 97–107 (2018).

    Google Scholar 

  102. 102.

    Bartos, M. et al. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States. Environ. Res. Lett. 11, 114008 (2016).

    Google Scholar 

  103. 103.

    Panteli, M. & Mancarella, P. Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies. Electric Power Syst. Res. 127, 259–270 (2015).

    Google Scholar 

  104. 104.

    Dowling, P. The impact of climate change on the European energy system. Energy Policy 60, 406–417 (2013).

    Google Scholar 

  105. 105.

    Haddeland, I. et al. Multimodel estimate of the global terrestrial water balance: setup and first results. J. Hydrometeorol. 12, 869–884 (2011).

    Google Scholar 

  106. 106.

    Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    Google Scholar 

  107. 107.

    Rosenzweig, C. et al. The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agri. Forest Meteorol. 170, 166–182 (2013).

    Google Scholar 

  108. 108.

    van Vuuren, D. P. & Carter, T. R. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim. Change 122, 415–429 (2014).

    Google Scholar 

  109. 109.

    Van Vuuren, D. P. et al. A new scenario framework for climate change research: scenario matrix architecture. Clim. Change 122, 373–386 (2014).

    Google Scholar 

  110. 110.

    O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).

    Google Scholar 

  111. 111.

    Wiedenhofer, D., Lenzen, M. & Steinberger, J. K. Energy requirements of consumption: urban form, climatic and socio-economic factors, rebounds and their policy implications. Energy Policy 63, 696–707 (2013).

    Google Scholar 

  112. 112.

    Frieler, K. et al. Assessing the impacts of 1.5 C global warming–simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).

    Google Scholar 

Download references


We wish to thank the JPI Climate initiative and participating grant institutes for funding the ISIpedia project. We also thank J. Burrough for professional advice on the English of a near-final draft. E.d.C. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 756194 (ENERGYA). J.G. is supported by a research grant from Science Foundation Ireland (SFI) and the National Natural Science Foundation of China (NSFC) under the SFI-NSFC Partnership Programme, grant no. 17/NSFC/5181. D.P.v.V., R.S. and D.E.H.J.G. are supported by the Horizon 2020 NAVIGATE project, and D.P.v.V., R.S. and D.E.H.J.G. also acknowledge support from the COMMIT and Horizon 2020 ENGAGE project. F.P. acknowledges support through the project ENGAGE funded in the framework of the Leibniz Competition (SAW-2016-PIK-1), as well as through the project CHIPS, part of AXIS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR/BMBF (DE, grant no. 01LS19XXY), AEI (ES) and ANR (FR) with cofunding by the European Union (grant no. 776608). R.S. acknowledges the financial support from the National Council for Scientific and Technological Development (CNPq), from the National Institute of Science and Technology for Climate Change Phase 2 under CNPq grant no. 465501/2014-1 and the National Coordination for High Level Education and Training (CAPES) grant no. 88887.136402/2017-00, all from Brazil. A.M. acknowledges support from the US Department of Energy, Office of Science’s Integrated Multisector Multiscale Modelling project and National Science Foundation’s Water Sustainability and Climate grant no. 1360445. This work was authored in part by the National Renewable Energy Laboratory (A.M.), operated by Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. S.F. is supported by the Environment Research and Technology Development Fund (2-1908 and 2-2002) provided by the Environmental Restoration and Conservation Agency, Japan. C.P. is supported by Korea Environment Industry & Technology Institute (KEITI) through Climate Change R&D Programme, funded by the Korea Ministry of Environment (MOE) (2018001310003).

Author information




S.G.Y. and D.P.v.V. codesigned the study. S.G.Y. collected and analysed data, and cowrote the initial draft manuscript with D.P.v.V. S.G.Y., D.P.v.V. and M.T.H.v.V. performed sectoral analysis of energy systems. S.G.Y., D.P.v.V., M.T.H.v.V., D.E.H.J.G., F.L., A.M., C.P., E.B., E.d.C., F.P., G.I., I.M., J.G., M.H., O.D., P.R., R.P., R.S., S.F., S.D., S.M., S.R.S.d.S., V.C. and R.V. contributed to the review of sectoral and regional climate impacts.

Corresponding author

Correspondence to Seleshi G. Yalew.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Note 1 and Fig. 1.

Source data

Source Data Fig. 2

Data points of articles, their category and years published.

Source Data Fig. 3

Data points of article category, warming level and scenario years.

Source Data Fig. 4

Data points of percentage changes of climate impact per region.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yalew, S.G., van Vliet, M.T.H., Gernaat, D.E.H.J. et al. Impacts of climate change on energy systems in global and regional scenarios. Nat Energy 5, 794–802 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing