Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries

Abstract

Aqueous battery systems feature high safety, but they usually suffer from low voltage and low energy density, restricting their applications in large-scale storage. Here, we propose an electrolyte-decoupling strategy to maximize the full potential of Zn–MnO2 batteries by simultaneously enabling the optimal redox chemistry of both the Zn and MnO2 electrodes. The decoupled Zn–MnO2 battery exhibits an open-circuit voltage of 2.83 V (in contrast to the typical voltage of 1.5 V in conventional Zn–MnO2 batteries), as well as cyclability with only 2% capacity fading after deep cycling for 200 h. Benefiting from the full utilization of MnO2, the Zn–MnO2 battery is also able to maintain approximately 100% of its capacity at various discharge current densities. We also demonstrate the feasibility of integrating the Zn–MnO2 battery with a wind and photovoltaic hybrid power generating system. This electrolyte-decoupling strategy is shown to be applicable for other high-performance zinc-based aqueous batteries such as Zn–Cu and Zn–Ag batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Working mechanisms of our Zn–MnO2 battery.
Fig. 2: Electrochemical performance of the DZMB.
Fig. 3: Structural characterization of the MnO2 electrode in the DZMB.
Fig. 4: Phase and surface chemistry characterization of the MnO2 electrode in the DZMB.
Fig. 5: In situ characterization of the MnO2 electrode during cycling and the working mechanism of the battery.
Fig. 6: Scale up of the DZMB and its practical application.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. 1.

    Wu, X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019).

    Article  Google Scholar 

  2. 2.

    Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    Article  Google Scholar 

  3. 3.

    Xu, K. & Wang, C. Batteries: widening voltage windows. Nat. Energy 1, 16161 (2016).

    Article  Google Scholar 

  4. 4.

    Liang, Y. et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017).

    Article  Google Scholar 

  5. 5.

    Wu, X. & Ji, X. Aqueous batteries get energetic. Nat. Chem. 11, 680–681 (2019).

    Article  Google Scholar 

  6. 6.

    Boden, D., Venuto, C. J., Wisler, D. & Wylie, R. B. The alkaline manganese dioxide electrode. J. Electrochem. Soc. 114, 415–417 (1967).

    Article  Google Scholar 

  7. 7.

    Kang, H. Y. & Liang, C. C. The anodic oxidation of manganese oxides in alkaline electrolytes. J. Electrochem. Soc. 115, 6–10 (1968).

    Article  Google Scholar 

  8. 8.

    Fang, G., Zhou, J., Pan, A. & Liang, S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018).

    Article  Google Scholar 

  9. 9.

    Konarov, A. et al. Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3, 2620–2640 (2018).

    Article  Google Scholar 

  10. 10.

    Song, M., Tan, H., Chao, D. & Fan, H. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018).

    Article  Google Scholar 

  11. 11.

    Zeng, X., Hao, J., Wang, Z., Mao, J. & Guo, Z. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 20, 410–437 (2019).

    Article  Google Scholar 

  12. 12.

    Chen, W. et al. A manganese–hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3, 428–435 (2018).

    Article  Google Scholar 

  13. 13.

    Yadav, G. G., Turney, D., Huang, J., Wei, X. & Banerjee, S. Breaking the 2 V barrier in aqueous zinc chemistry: creating 2.45 and 2.8 V MnO2–Zn aqueous batteries. ACS Energy Lett. 4, 2144–2146 (2019).

    Article  Google Scholar 

  14. 14.

    Chen, L., Guo, Z., Xia, Y. & Wang, Y. High-voltage aqueous battery approaching 3 V using an acidic–alkaline double electrolyte. Chem. Commun. 49, 2204–2206 (2013).

    Article  Google Scholar 

  15. 15.

    Chao, D. et al. An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823–7828 (2019).

    Article  Google Scholar 

  16. 16.

    Haynes, W. M. CRC Handbook of Chemistry and Physics 97th edn, (CRC Press, 2017).

  17. 17.

    Dickinson, E. J. F., Freitag, L. & Compton, R. G. Dynamic theory of liquid junction potentials. J. Phys. Chem. B 114, 187–197 (2010).

    Article  Google Scholar 

  18. 18.

    Wei, L., Zeng, L., Wu, M. C., Jiang, H. R. & Zhao, T. S. An aqueous manganese-copper battery for large-scale energy storage applications. J. Power Sources 423, 203–210 (2019).

    Article  Google Scholar 

  19. 19.

    Parker, J. F. et al. Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017).

    Article  Google Scholar 

  20. 20.

    Reddy, T. B. Linden’s Handbook of Batteries 4th edn (McGraw-Hill, 2011).

  21. 21.

    Ingale, N. D., Gallaway, J. W., Nyce, M., Couzis, A. & Banerjee, S. Rechargeability and economic aspects of alkaline zinc–manganese dioxide cells for electrical storage and load leveling. J. Power Sources 276, 7–18 (2015).

    Article  Google Scholar 

  22. 22.

    Wang, X., Chandrabose, R. S., Jian, Z., Xing, Z. & Ji, X. A 1.8 V aqueous supercapacitor with a bipolar assembly of ion-exchange membranes as the separator. J. Electrochem. Soc. 163, A1853–A1858 (2016).

    Article  Google Scholar 

  23. 23.

    Brown, B., Cordova, I. A., Parker, C. B., Stoner, B. R. & Glass, J. T. Optimization of active manganese oxide electrodeposits using graphenated carbon nanotube electrodes for supercapacitors. Chem. Mater. 27, 2430–2438 (2015).

    Article  Google Scholar 

  24. 24.

    Ramana, C. V., Massot, M. & Julien, C. M. XPS and Raman spectroscopic characterization of LiMn2O4 spinels. Surf. Interface Anal. 37, 412–416 (2005).

    Article  Google Scholar 

  25. 25.

    Chigane, M. & Ishikawa, M. Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism. J. Electrochem. Soc. 147, 2246–2251 (2000).

    Article  Google Scholar 

  26. 26.

    Proctor, A. & Sherwood, P. M. A. X-ray photoelectron spectroscopic studies of carbon fibre surfaces—II: the effect of electrochemical treatment. Carbon 21, 53–59 (1983).

    Article  Google Scholar 

  27. 27.

    Julien, C. M., Massot, M. & Poinsignon, C. Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochim. Acta A 60, 689–700 (2004).

    Article  Google Scholar 

  28. 28.

    Tuinstra, F. & Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970).

    Article  Google Scholar 

  29. 29.

    Boskovic, B. O., Stolojan, V., Khan, R. U. A., Haq, S. & Silva, S. R. P. Large-area synthesis of carbon nanofibres at room temperature. Nat. Mater. 1, 165–168 (2002).

    Article  Google Scholar 

  30. 30.

    Dronskowski, R. & Blöchl, P. E. Crystal orbital Hamilton populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article  Google Scholar 

  31. 31.

    Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    Article  Google Scholar 

  32. 32.

    Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

    Article  Google Scholar 

  33. 33.

    Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    Article  Google Scholar 

  34. 34.

    Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    Article  Google Scholar 

  35. 35.

    Guo, J. et al. Artificial solid electrolyte interphase for suppressing surface reactions and cathode dissolution in aqueous zinc ion batteries. ACS Energy Lett. 4, 2776–2781 (2019).

    Article  Google Scholar 

  36. 36.

    Soundharrajan, V. et al. Aqueous magnesium zinc hybrid battery: an advanced high-voltage and high-energy MgMn2O4 cathode. ACS Energy Lett. 3, 1998–2004 (2018).

    Article  Google Scholar 

  37. 37.

    Wang, D. et al. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 13, 10643–10652 (2019).

    Article  Google Scholar 

  38. 38.

    Fu, Y. et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8, 1801445 (2018).

    Article  Google Scholar 

  39. 39.

    Xiong, T. et al. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9, 1803815 (2019).

    Article  Google Scholar 

  40. 40.

    Fang, G. et al. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29, 1808375 (2019).

    Article  Google Scholar 

  41. 41.

    Nam, K. W., Kim, H., Choi, J. H. & Choi, J. W. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 12, 1999–2009 (2019).

    Article  Google Scholar 

  42. 42.

    Sun, W. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017).

    Article  Google Scholar 

  43. 43.

    Zhang, N. et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016).

    Article  Google Scholar 

  44. 44.

    Gou, L. et al. α-MnO2@In2O3 nanotubes as cathode material for aqueous rechargeable Zn-ion battery with high electrochemical performance. J. Electrochem. Soc. 166, A3362–A3368 (2019).

    Article  Google Scholar 

  45. 45.

    Wang, D. et al. A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn–MnO2 battery with superior shear resistance. Small 14, 1803978 (2018).

    Article  Google Scholar 

  46. 46.

    Liang, G. et al. A universal principle to design reversible aqueous batteries based on deposition–dissolution mechanism. Adv. Energy Mater. 9, 1901838 (2019).

    Article  Google Scholar 

  47. 47.

    Putois, F. Market for nickel–cadmium batteries. J. Power Sources 57, 67–70 (1995).

    Article  Google Scholar 

  48. 48.

    Zhu, Q. et al. Realizing a rechargeable high-performance Cu–Zn battery by adjusting the solubility of Cu2+. Adv. Funct. Mater. 29, 1905979 (2019).

    Article  Google Scholar 

  49. 49.

    Gaines, L. Secondary silver–zinc battery technology. J. Electrochem. Soc. 116, 61C–67C (1969).

    Article  Google Scholar 

  50. 50.

    Yan, C. et al. Stretchable silver-zinc batteries based on embedded nanowire elastic conductors. Adv. Energy Mater. 4, 1301396 (2014).

    Article  Google Scholar 

  51. 51.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  52. 52.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  53. 53.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  54. 54.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  55. 55.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  Google Scholar 

  56. 56.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

C.Z. acknowledges support from the National Science Foundation for Excellent Young Scholars (no. 51722403), the National Natural Science Foundation of China (no. 51771134), the National Youth Talent Support Program and Tianjin Natural Science Foundation (no. 18JCJQJC46500). This work was also supported by the National Natural Science Foundation of China and Guangdong Province (no. U1601216).

Author information

Affiliations

Authors

Contributions

C.Z. conceived the idea. C.Z. and B.L. designed the experiments. C.Z. and B.L. performed the experiments and analysed the results. B.L. and N.Z. performed the calculations. X.L. and Y.L. performed the SEM and EDX measurements. Y.Z. performed the PXRD measurements. Y.Z., C.S. and B.L. prepared the figures. C.Z. wrote and revised the draft. J.D., X.H. and Y.D. checked the calculations. W.H. and C.Z. supervised the overall research. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Cheng Zhong or Wenbin Hu.

Ethics declarations

Competing interests

A PCT patent associated with the work (patent number: PCT/CN2019/074801; patent name: high voltage rechargeable Zn-MnO2 battery) was filed in February 2019.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1‒19, Tables 1 and 2, and refs. 1–67.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhong, C., Liu, B., Ding, J. et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat Energy 5, 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing