Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simple interventions can correct misperceptions of home energy use


Public estimates of energy use suffer from severe biases. Failure to correct these may hinder efforts to conserve energy and undermine support for evidence-based policies. Here we present a randomized online experiment that showed that home energy perceptions can be improved. We tested two simple, potentially scalable interventions: providing numerical information (in watt-hours) about extremes of energy use and providing an explicit heuristic that addressed a common misperception. Both succeeded in improving numerical estimates of energy use, but in different ways. Numerical information about extremes primarily improved the use of the watt-hours response scale, while the heuristic improved underlying understanding of relative energy use. As a result, only the heuristic significantly benefitted judgements about energy-conserving behaviours. Because understanding of energy use also predicted self-reported energy-conservation behaviour, belief in climate change, and support for climate policies, targeting energy misperceptions may have the potential to shape individual behaviour and national policy support.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Relation between actual and estimated energy use.
Fig. 2: Effects of explicit heuristic and scale-use information interventions on energy-use estimates of home appliances.
Fig. 3: Individual differences in understanding the appliances’ relative energy use.

Data availability

All data generated or analyzed during this study are available online:

Code availability

The code to generate figures and results is available upon request.


  1. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2015).

  2. Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C. & Vandenbergh, M. P. Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc. Natl Acad. Sci. USA 106, 18452–18456 (2009).

    Article  Google Scholar 

  3. Attari, S. Z., DeKay, M. L., Davidson, C. I. & De Bruin, W. B. Public perceptions of energy consumption and savings. Proc. Natl Acad. Sci. USA 107, 16054–16059 (2010).

    Article  Google Scholar 

  4. Lesic, V., de Bruin, W. B., Davis, M. C., Krishnamurti, T. & Azevedo, I. M. Consumers’ perceptions of energy use and energy savings: a literature review. Environ. Res. Lett. 13, 033004 (2018).

    Article  Google Scholar 

  5. Attari, S. Z., DeKay, M. L., Davidson, C. I. & de Bruin, W. B. Changing household behaviors to curb climate change: how hard can it be? Sustainability 4, 9–11 (2011).

    Article  Google Scholar 

  6. Larrick, R. P. in Blackwell Handbook of Judgment & Decision Making (eds Koehler, D. K. & Harvey, N.) Ch. 16 (Blackwell, 2004).

  7. White, L. V. & Sintov, N. D. Inaccurate consumer perceptions of monetary savings in a demand-side response programme predict programme acceptance. Nat. Energy 3, 1101–1108 (2018).

  8. Delmas, M. A., Fischlein, M. & Asensio, O. I. Information strategies and energy conservation behavior: a meta-analysis of experimental studies from 1975 to 2012. Energy Policy 61, 729–739 (2013).

    Article  Google Scholar 

  9. Darby, S. The Effectiveness of Feedback on Energy Consumption: A Review for DEFRA of the Literature on Metering, Billing and Direct Displays (Univ. of Oxford Environmental Change Institute, 2006).

  10. Shepard, R. N. Psychological relations and psychophysical scales: On the status of “direct” psychophysical measurement. J. Math. Psychol. 24, 21–57 (1981).

    MathSciNet  Article  Google Scholar 

  11. Laming, D. R. J. The Measurement of Sensation (Oxford Univ. Press, 1997).

  12. Brunswik, E. Perception and the Representative Design of Psychological Experiments (Univ. of California Press, 1956).

  13. Cowen, L. & Gatersleben, B. Testing for the size heuristic in householders’ perceptions of energy consumption. J. Environ. Psychol. 54, 103–115 (2017).

    Article  Google Scholar 

  14. Kahneman, D. & Frederick, S. in Heuristics and Biases: The Pschychology of Intuitive Judgment (eds Gilovich, T. et al.) Ch. 2 (Cambridge Univ. Press, 2002).

  15. Schley, D. R. & DeKay, M. L. Cognitive accessibility in judgments of household energy consumption. J. Environ. Psychol. 43, 30–41 (2015).

    Article  Google Scholar 

  16. Stevens, S. S. On the theory of scales of measurement. Science 103, 677–680 (1946).

    Article  Google Scholar 

  17. Huttenlocher, J., Hedges, L. V. & Duncan, S. Categories and particulars: Prototype effects in estimating spatial location. Psychol. Rev. 98, 352 (1991).

    Article  Google Scholar 

  18. Kahneman, D. & Tversky, A. in Handbook of the Fundamentals of Financial Decision Making: Part I (eds MacLean, L. C. & Ziemba, W. T.) Ch. 6 (World Scientific, 2013).

  19. Landy, D., Guay, B. & Marghetis, T. Bias and ignorance in demographic perception. Psychon. Bull. Rev. 25, 1–13 (2017).

    Google Scholar 

  20. Hollingworth, H. L. The central tendency of judgment. J. Philos. Psychol. Sci. Methods 7, 461–469 (1910).

    Google Scholar 

  21. Varey, C. A., Mellers, B. A. & Birnbaum, M. H. Judgments of proportions. J. Exp. Psychol. Hum. Percept. Perform. 16, 613 (1990).

    Article  Google Scholar 

  22. Frederick, S. W., Meyer, A. B. & Mochon, D. Characterizing perceptions of energy consumption. Proc. Natl Acad. Sci. USA 108, E23 (2011).

    Article  Google Scholar 

  23. Newell, B. R. & Shanks, D. R. Prime numbers: anchoring and its implications for theories of behavior priming. Soc. Cogn. 32, 88–108 (2014).

    Article  Google Scholar 

  24. Simon, H. A. & Newell, A. Heuristic problem solving: the next advance in operations research. Oper. Res. 6, 1–10 (1958).

    Article  Google Scholar 

  25. Attari, S. Z. Perceptions of water use. Proc. Natl Acad. Sci. USA 111, 5129–5134 (2014).

    Article  Google Scholar 

  26. Kollmuss, A. & Agyeman, J. Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 8, 239–260 (2002).

    Article  Google Scholar 

  27. Drummond, C. & Fischhoff, B. Individuals with greater science literacy and education have more polarized beliefs on controversial science topics. Proc. Natl Acad. Sci. USA 114, 9587–9592 (2017).

    Article  Google Scholar 

  28. Abrahamse, W., Steg, L., Vlek, C. & Rothengatter, T. A review of intervention studies aimed at household energy conservation. J. Environ. Psychol. 25, 273–291 (2005).

    Article  Google Scholar 

  29. Asensio, O. I. & Delmas, M. A. Nonprice incentives and energy conservation. Proc. Natl Acad. Sci. USA 112, E510–E515 (2015).

    Article  Google Scholar 

  30. Schultz, P. W., Nolan, J. M., Cialdini, R. B., Goldstein, N. J. & Griskevicius, V. The constructive, destructive, and reconstructive power of social norms. Psychol. Sci. 18, 429–434 (2007).

  31. Tversky, A. & Kahneman, D. Judgment under uncertainty: heuristics and biases. Science 185, 1124–1131 (1974).

    Article  Google Scholar 

  32. Kahan, D. M. et al. The polarizing impact of science literacy and numeracy on perceived climate change risks. Nat. Clim. Change 2, 732 (2012).

    Article  Google Scholar 

  33. Newport, F. & Dugan, A. College-educated Republicans most skeptical of global warming. Gallup News (2015).

  34. Hart, P. S. & Nisbet, E. C. Boomerang effects in science communication: how motivated reasoning and identity cues amplify opinion polarization about climate mitigation policies. Communic. Res. 39, 701–723 (2012).

    Article  Google Scholar 

  35. Kempton, W. & Montgomery, L. Folk quantification of energy. Energy 7, 817–827 (1982).

    Article  Google Scholar 

  36. Kempton, W. Two theories of home heat control. Cogn. Sci. 10, 75–90 (1986).

    Article  Google Scholar 

  37. Campos, S., Doxey, J. & Hammond, D. Nutrition labels on pre-packaged foods: a systematic review. Public Health Nutr. 14, 1496–1506 (2011).

    Article  Google Scholar 

  38. Gardner, G. T. & Stern, P. C. Environmental Problems and Human Behavior (Allyn & Bacon, 1996).

  39. Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. Science 302, 1907–1912 (2003).

    Article  Google Scholar 

  40. American FactFinder (US Census Bureau, accessed 11 April 2018);

  41. Leiserowitz, A., Maibach, E. W., Roser-Renouf, C., Feinberg, G. & Howe, P. Climate Change in the American Mind: Americans’ Global Warming Beliefs and Attitudes in April 2013 (Yale University and George Mason University, 2013).

  42. Dunlap, R. E., Van Liere, K. D., Mertig, A. G. & Jones, R. E. Measuring endorsement of the New Ecological Paradigm: a revised NEP scale. J. Soc. Issues 56, 425–442 (2000).

    Article  Google Scholar 

  43. Schwartz, L. M., Woloshin, S., Black, W. C. & Welch, H. G. The role of numeracy in understanding the benefit of screening mammography. Ann. Intern. Med. 127, 966–972 (1997).

    Article  Google Scholar 

  44. Cokely, E. T., Galesic, M., Schulz, E., Ghazal, S. & Garcia-Retamero, R. Measuring risk literacy: the Berlin Numeracy Test. Judgm. Decis. Mak. 7, 25–47 (2012).

  45. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  46. Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1–13 (2014);

  47. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R package for causal mediation analysis. J. Stat. Softw. 59, 1–38 (2014).

  48. Buhrmester, M., Kwang, T. & Gosling, S. D. Amazon’s Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 6, 3–5 (2011).

    Article  Google Scholar 

Download references


This work is supported by National Science Foundation grant no. SES-1658804 from Decision, Risk and Management Sciences; and in part by the Office of the Vice President of Research at Indiana University Bloomington through the Emerging Area of Research initiative, Learning: Brains, Machines and Children; the Center for Advanced Study in the Behavioral Sciences (CASBS) at Stanford University; and a grant from Carnegie Corporation of New York. S.Z.A. is an Andrew Carnegie Fellow. We thank all our survey participants and research assistants S. Watkins and D. Lundberg. We also thank B. Bergen, E. Brower and D. Miniard for feedback.

Author information

Authors and Affiliations



S.Z.A. and D.L. designed the research. S.Z.A collected the data. T.M. analyzed the data. T.M., S.Z.A. and D.L. wrote the paper.

Corresponding author

Correspondence to Tyler Marghetis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Tables 1–11, Figs. 1–3, methods and refs. 1–6.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marghetis, T., Attari, S.Z. & Landy, D. Simple interventions can correct misperceptions of home energy use. Nat Energy 4, 874–881 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing