Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels

Abstract

The electrocatalytic reduction of carbon dioxide is a promising approach for storing (excess) renewable electricity as chemical energy in fuels. Here, we review recent advances and challenges in the understanding of electrochemical CO2 reduction. We discuss existing models for the initial activation of CO2 on the electrocatalyst and their importance for understanding selectivity. Carbon–carbon bond formation is also a key mechanistic step in CO2 electroreduction to high-density and high-value fuels. We show that both the initial CO2 activation and C–C bond formation are influenced by an intricate interplay between surface structure (both on the nano- and on the mesoscale), electrolyte effects (pH, buffer strength, ion effects) and mass transport conditions. This complex interplay is currently still far from being completely understood. In addition, we discuss recent progress in in situ spectroscopic techniques and computational techniques for mechanistic work. Finally, we identify some challenges in furthering our understanding of these themes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of themes discussed in this review.
Fig. 2: Overview of reaction pathways for CO2RR towards different products.
Fig. 3: Schematic of the different length scales involved in the understanding of CO2RR and of the influence of relevant parameters.
Fig. 4: In situ spectroelectrochemical techniques used in the understanding of CO2RR.
Fig. 5: Fundamentals of descriptor-based analyses for CO2RR.
Fig. 6: Recent progress in descriptor-based analyses.

References

  1. 1.

    Whipple, D. T. & Kenis, P. J. A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451–3458 (2010).

    Google Scholar 

  2. 2.

    Durst, J. et al. Electrochemical CO2 reduction — a critical view on fundamentals, materials and applications. Chim. Int. J. Chem. 69, 769–776 (2015).

    Google Scholar 

  3. 3.

    Jones, J. P., Prakash, G. K. S. & Olah, G. A. Electrochemical CO2 reduction: recent advances and current trends. Isr. J. Chem. 54, 1451–1466 (2014).

    Google Scholar 

  4. 4.

    Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C., White, R. & Gamboa-Aldeco, M.) 89–189 (Springer, 2008).

  5. 5.

    Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? joule 2, 825–832 (2018).

    Google Scholar 

  6. 6.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Google Scholar 

  7. 7.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Google Scholar 

  8. 8.

    Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994).

    Google Scholar 

  9. 9.

    Kortlever, R., Peters, I., Koper, S. & Koper, M. T. M. Electrochemical CO2 reduction to formic acid at low overpotential and with high Faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles. ACS Catal. 5, 3916–3923 (2015).

    Google Scholar 

  10. 10.

    Armstrong, F. A. & Hirst, J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

    Google Scholar 

  11. 11.

    Yoo, J. S., Christensen, R., Vegge, T., Nørskov, J. K. & Studt, F. Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid. ChemSusChem 9, 358–363 (2016).

    Google Scholar 

  12. 12.

    Göttle, A. J. & Koper, M. T. M. Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 8, 458–465 (2017).

    Google Scholar 

  13. 13.

    Shen, J. et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 6, 8177 (2015).

    Google Scholar 

  14. 14.

    Shen, J., Kolb, M. J., Göttle, A. J. & Koper, M. T. M. DFT study on the mechanism of the electrochemical reduction of CO2 catalyzed by cobalt porphyrins. J. Phys. Chem. C. 120, 15714–15721 (2016).

    Google Scholar 

  15. 15.

    Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–E4593 (2016).

    Google Scholar 

  16. 16.

    Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Google Scholar 

  17. 17.

    Singh, M. R., Goodpaster, J. D., Weber, A. Z., Head-gordon, M. & Bell, A. T. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proc. Natl Acad. Sci. USA 114, E8812–E8821 (2017).

    Google Scholar 

  18. 18.

    Birdja, Y. Y., Shen, J. & Koper, M. T. M. Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid. Catal. Today 288, 37–47 (2017).

    Google Scholar 

  19. 19.

    Solis, B. H., Maher, A. G., Dogutan, D. K., Nocera, D. G. & Hammes-Schiffer, S. Nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism. Proc. Natl Acad. Sci. USA 113, 485–492 (2016).

    Google Scholar 

  20. 20.

    Göttle, A. J. & Koper, M. T. M. Determinant role of the electrogenerated reactive nucleophilic species on the selectivity during the reduction of CO2 catalyzed by metalloporphyrins. J. Am. Chem. Soc. 140, 4826–4834 (2018).

    Google Scholar 

  21. 21.

    Loewen, N. D., Neelakantan, T. V. & Berben, L. A. Renewable formate from C–H bond formation with CO2: using iron carbonyl clusters as electrocatalysts. Acc. Chem. Res. 50, 2362–2370 (2017).

    Google Scholar 

  22. 22.

    Tang, Q. et al. Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 139, 9728–9736 (2017).

    Google Scholar 

  23. 23.

    Min, X. & Kanan, M. W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J. Am. Chem. Soc. 137, 4701–4708 (2015).

    Google Scholar 

  24. 24.

    Groenenboom, M. C. & Keith, J. A. Quantum chemical analyses of BH4 and BH3OH hydride transfers to CO2 in aqueous solution with potentials of mean force. ChemPhysChem 18, 3148–3152 (2017).

    Google Scholar 

  25. 25.

    Torelli, D. A. et al. Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 6, 2100–2104 (2016).

    Google Scholar 

  26. 26.

    Kortlever, R. et al. Palladium–gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons. Chem. Commun. 52, 10229–10232 (2016).

    Google Scholar 

  27. 27.

    Calvinho, K. U. D. et al. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ. Sci. 11, 2550–2559 (2018).

    Google Scholar 

  28. 28.

    Fan, Q. et al. Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 10, 280–301 (2018).

    Google Scholar 

  29. 29.

    Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. & Agapie, T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3, 853–859 (2017).

    Google Scholar 

  30. 30.

    Hoang, T. T. H. et al. Nano porous copper-silver alloys by additive-controlled electro-deposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    Google Scholar 

  31. 31.

    Dinh, C., Burdyny, T., Kibria, G., Seifitokaldani, A. & Christine, M. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Google Scholar 

  32. 32.

    Gao, D. et al. Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design. ACS Catal. 8, 10012–10020 (2018).

    Google Scholar 

  33. 33.

    Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A 199, 39–47 (2003).

    Google Scholar 

  34. 34.

    Schouten, K. J. P., Kwon, Y., van der Ham, C. J. M., Qin, Z. & Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    Google Scholar 

  35. 35.

    Schouten, K., Gallent, E. & Koper, M. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal. 4, 1292–1295 (2013).

    Google Scholar 

  36. 36.

    Schouten, K. J. P., Qin, Z., Gallent, E. P. & Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

    Google Scholar 

  37. 37.

    Gattrell, M., Gupta, N. & Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1–19 (2006).

    Google Scholar 

  38. 38.

    Wuttig, A. et al. Tracking a common surface-bound intermediate during CO2-to-fuels catalysis. ACS Cent. Sci. 2, 522–528 (2016).

    Google Scholar 

  39. 39.

    Calle-Vallejo, F. & Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013).

    Google Scholar 

  40. 40.

    Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Google Scholar 

  41. 41.

    Goodpaster, J. D., Bell, A. T. & Head-Gordon, M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7, 1471–1477 (2016).

    Google Scholar 

  42. 42.

    Li, H., Li, Y., Koper, M. T. M. & Calle-Vallejo, F. Bond making and breaking between carbon, nitrogen and oxygen in electrocatalysis. J. Am. Chem. Soc. 136, 15694–15701 (2014).

    Google Scholar 

  43. 43.

    Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013).

    Google Scholar 

  44. 44.

    Garza, A., Bell, A. T. & Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018).

    Google Scholar 

  45. 45.

    Pérez-Gallent, E., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017).

    Google Scholar 

  46. 46.

    Kas, R., Kortlever, R., Yilmaz, H., Koper, M. T. M. & Mul, G. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2, 354–358 (2015).

    Google Scholar 

  47. 47.

    Hanselman, S., Koper, M. T. M. & Calle-Vallejo, F. Computational comparison of late transition metal (100) surfaces for the electrocatalytic reduction of CO to C2 species. ACS Energy Lett. 3, 1062–1067 (2018).

    Google Scholar 

  48. 48.

    Ledezma-Yanez, I., Gallent, E. P., Koper, M. T. M. & Calle-Vallejo, F. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal. Today 262, 90–94 (2016).

    Google Scholar 

  49. 49.

    Hahn, C. et al. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl Acad. Sci. USA 114, 5918–5923 (2017).

    Google Scholar 

  50. 50.

    Ren, D., Ang, B. S.-H. & Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016).

    Google Scholar 

  51. 51.

    Liu, Y., Chen, S., Quan, X. & Yu, H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137, 11631–11636 (2015).

    Google Scholar 

  52. 52.

    Genovese, C., Ampelli, C., Perathoner, S. & Centi, G. Mechanism of C–C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green. Chem. 19, 2406–2415 (2017).

    Google Scholar 

  53. 53.

    Birdja, Y. Y. & Koper, M. T. M. The importance of Cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 139, 2030–2034 (2017).

    Google Scholar 

  54. 54.

    Zhuang, T. T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    Google Scholar 

  55. 55.

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Google Scholar 

  56. 56.

    Ren, D., Wong, N. T., Handoko, A. D., Huang, Y. & Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 7, 20–24 (2016).

    Google Scholar 

  57. 57.

    Singh, M. R. et al. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17, 18924–18936 (2015).

    Google Scholar 

  58. 58.

    Clark, E. L. et al. Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal. 8, 6560–6570 (2018).

    Google Scholar 

  59. 59.

    Zhong, H., Fujii, K., Nakano, Y. & Jin, F. Effect of CO2 bubbling into aqueous solutions used for electrochemical reduction of CO2 for energy conversion and storage. J. Phys. Chem. C. 119, 55–61 (2015).

    Google Scholar 

  60. 60.

    Sreekanth, N. & Phani, K. L. Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM. Chem. Commun. 50, 11143–11146 (2014).

    Google Scholar 

  61. 61.

    Kortlever, R., Tan, K. H., Kwon, Y. & Koper, M. T. M. Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media. J. Solid State Electrochem. 17, 1843–1849 (2013).

    Google Scholar 

  62. 62.

    Innocent, B. et al. FTIR spectroscopy study of the reduction of carbon dioxide on lead electrode in aqueous medium. Appl. Catal. B 94, 219–224 (2010).

    Google Scholar 

  63. 63.

    Dunwell, M. et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017).

    Google Scholar 

  64. 64.

    Zhu, S., Jiang, B., Cai, W. Bin & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).

    Google Scholar 

  65. 65.

    Wuttig, A., Yoon, Y., Ryu, J. & Surendranath, Y. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 139, 17109–17113 (2017).

    Google Scholar 

  66. 66.

    Resasco, J., Lum, Y., Clark, E., Zeledon, J. Z. & Bell, A. T. Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5, 1064–1072 (2018).

    Google Scholar 

  67. 67.

    Varela, A. S., Kroschel, M., Reier, T. & Strasser, P. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2016).

    Google Scholar 

  68. 68.

    Dunwell, M. et al. Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy. ACS Catal. 8, 3999–4008 (2018).

    Google Scholar 

  69. 69.

    Gupta, N., Gattrell, M. & MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006).

    Google Scholar 

  70. 70.

    Hashiba, H. et al. Effects of electrolyte buffer capacity on surface reactant species and reaction rate of CO2 in electrochemical CO2 reduction. J. Phys. Chem. C. 122, 3719–3726 (2018).

    Google Scholar 

  71. 71.

    Liu, X. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    Google Scholar 

  72. 72.

    Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85, 2309–2326 (1989).

    Google Scholar 

  73. 73.

    Yoon, Y., Hall, A. S. & Surendranath, Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem. Int. Ed. 55, 15282–15286 (2016).

    Google Scholar 

  74. 74.

    Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).

    Google Scholar 

  75. 75.

    Lim, C. F. C., Harrington, D. A. & Marshall, A. T. Effects of mass transfer on the electrocatalytic CO2 reduction on Cu. Electrochim. Acta 238, 56–63 (2017).

    Google Scholar 

  76. 76.

    Ooka, H., Figueiredo, M. C. & Koper, M. T. M. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33, 9307–9313 (2017).

    Google Scholar 

  77. 77.

    Luca, O. R. & Fenwick, A. Q. Organic reactions for the electrochemical and photochemical production of CO2 to fuels — the reduction chemistry of carboxylic acids as bent CO2 surrogates, aldehydes, alcohols and alkyls. J. Photochem. Photobiol. B 152, 26–42 (2015).

    Google Scholar 

  78. 78.

    Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991).

    Google Scholar 

  79. 79.

    Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).

    Google Scholar 

  80. 80.

    Thorson, M. R., Siil, K. I. & Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2013).

    Google Scholar 

  81. 81.

    Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Google Scholar 

  82. 82.

    Pérez-Gallent, E., Marcandalli, G., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017).

    Google Scholar 

  83. 83.

    Yano, H., Tanaka, T., Nakayama, M. & Ogura, K. Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper(I) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides. J. Electroanal. Chem. 565, 287–293 (2004).

    Google Scholar 

  84. 84.

    Ogura, K., Ferrell, J. R., Cugini, A. V., Smotkin, E. S. & Salazar-Villalpando, M. D. CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction. Electrochim. Acta 56, 381–386 (2010).

    Google Scholar 

  85. 85.

    Varela, A. S., Ju, W., Reier, T. & Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 6, 2136–2144 (2016).

    Google Scholar 

  86. 86.

    Gao, D., Scholten, F. & Roldan Cuenya, B. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: halide effect. ACS Catal. 7, 5112–5120 (2017).

    Google Scholar 

  87. 87.

    Huang, Y., Ong, C. W. & Yeo, B. S. Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 11, 3299–3306 (2018).

    Google Scholar 

  88. 88.

    Tang, W. et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2012).

    Google Scholar 

  89. 89.

    Roberts, F. S., Kuhl, K. P. & Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54, 5179–5182 (2015).

    Google Scholar 

  90. 90.

    Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    Google Scholar 

  91. 91.

    Sen, S., Liu, D. & Palmore, G. T. R. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014).

    Google Scholar 

  92. 92.

    Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014).

    Google Scholar 

  93. 93.

    Yang, K. D. et al. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem. Int. Ed. 56, 796–800 (2017).

    Google Scholar 

  94. 94.

    Chen, C. S. et al. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 5, 161–168 (2015).

    Google Scholar 

  95. 95.

    Mistry, H. et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions. ACS Catal. 6, 1075–1080 (2016).

    Google Scholar 

  96. 96.

    Kas, R. et al. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nat. Commun. 7, 10748 (2016).

    Google Scholar 

  97. 97.

    Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012).

    Google Scholar 

  98. 98.

    Lee, C. H. & Kanan, M. W. Controlling H+ vs CO2 reduction selectivity on Pb electrodes. ACS Catal. 5, 465–469 (2015).

    Google Scholar 

  99. 99.

    Dutta, A., Rahaman, M., Luedi, N. C., Mohos, M. & Broekmann, P. Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 6, 3804–3814 (2016).

    Google Scholar 

  100. 100.

    Ma, M., Djanashvili, K. & Smith, W. A. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Phys. Chem. Chem. Phys. 17, 20861–20867 (2015).

    Google Scholar 

  101. 101.

    Kas, R. et al. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16, 12194–201 (2014).

    Google Scholar 

  102. 102.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Google Scholar 

  103. 103.

    Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    Google Scholar 

  104. 104.

    Ma, M., Trześniewski, B. J., Xie, J. & Smith, W. A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem. Int. Ed. 55, 9748–9752 (2016).

    Google Scholar 

  105. 105.

    Pander, J. E. et al. Understanding the heterogeneous electrocatalytic reduction of carbon dioxide on oxide-derived catalysts. ChemElectroChem 5, 219–237 (2018).

    Google Scholar 

  106. 106.

    Zhu, W. et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013).

    Google Scholar 

  107. 107.

    Mistry, H. et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473–16476 (2014).

    Google Scholar 

  108. 108.

    Feng, X., Jiang, K., Fan, S. & Kanan, M. W. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2, 169–174 (2016).

    Google Scholar 

  109. 109.

    Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

    Google Scholar 

  110. 110.

    Eilert, A. et al. Subsurface Oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017).

    Google Scholar 

  111. 111.

    Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

    Google Scholar 

  112. 112.

    Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    Google Scholar 

  113. 113.

    Mistry, H. et al. Enhanced carbon dioxide electroreduction to carbon monoxide over defect-rich plasma-activated silver catalysts. Angew. Chem. Int. Ed. 56, 11394–11398 (2017).

    Google Scholar 

  114. 114.

    Favaro, M. et al. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6706–6711 (2017).

    Google Scholar 

  115. 115.

    Xiao, J., Kuc, A., Frauenheim, T. & Heine, T. CO2 reduction at low overpotential on Cu electrodes in the presence of impurities at the subsurface. J. Mater. Chem. A 2, 4885–4889 (2014).

    Google Scholar 

  116. 116.

    Fields, M., Hong, X., Norskov, J. K. & Chan, K. The role of subsurface oxygen on Cu surfaces for CO2 electrochemical reduction. J. Phys. Chem. C. 122, 16209–16215 (2018).

    Google Scholar 

  117. 117.

    Lum, Y. & Ager, J. W. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem. Int. Ed. 57, 551–554 (2018).

    Google Scholar 

  118. 118.

    Garza, A. J., Bell, A. T. & Head-Gordon, M. Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper. J. Phys. Chem. Lett. 9, 601–606 (2018).

    Google Scholar 

  119. 119.

    Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    Google Scholar 

  120. 120.

    Cheng, T., Xiao, H. & Goddard, W. A. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 139, 11642–11645 (2017).

    Google Scholar 

  121. 121.

    Le, M. et al. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J. Electrochem. Soc. 158, E45–E49 (2011).

    Google Scholar 

  122. 122.

    Frese, K. W. Electrochemical reduction of CO2 at intentionally oxidized copper electrodes. J. Electrochem. Soc. 138, 3338–3344 (1991).

    Google Scholar 

  123. 123.

    Ren, D. et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015).

    Google Scholar 

  124. 124.

    Chi, D. et al. Morphology-controlled CuO nanoparticles for electroreduction of CO2 to ethanol. RSC Adv 4, 37329–37332 (2014).

    Google Scholar 

  125. 125.

    Kim, D. et al. Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2. Phys. Chem. Chem. Phys. 17, 824–830 (2015).

    Google Scholar 

  126. 126.

    Lee, S., Kim, D. & Lee, J. Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O–Cu catalyst. Angew. Chem. Int. Ed. 54, 14701–14705 (2015).

    Google Scholar 

  127. 127.

    Le Duff, C. S., Lawrence, M. J. & Rodriguez, P. Role of the adsorbed oxygen species in the selective electrochemical reduction of CO2 to alcohols and carbonyls on copper electrodes. Angew. Chem. Int. Ed. 56, 12919–12924 (2017).

    Google Scholar 

  128. 128.

    Ren, D., Fong, J. & Yeo, B. S. The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction. Nat. Commun. 9, 925 (2018).

    Google Scholar 

  129. 129.

    Trasatti, S. & Petrii, O. A. Real surface area measurement in electrochemistry. Pure Appl. Chem. 63, 711–734 (1991).

    Google Scholar 

  130. 130.

    McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).

    Google Scholar 

  131. 131.

    Heyes, J., Dunwell, M. & Xu, B. CO2 reduction on Cu at low overpotentials with surface-enhanced in situ spectroscopy. J. Phys. Chem. C. 120, 17334–17341 (2016).

    Google Scholar 

  132. 132.

    Gunathunge, C. M. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C. 121, 12337–12344 (2017).

    Google Scholar 

  133. 133.

    Pander, J. E., Baruch, M. F. & Bocarsly, A. B. Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry. ACS Catal. 6, 7824–7833 (2016).

    Google Scholar 

  134. 134.

    Cheng, T., Fortunelli, A. & Goddard, W. A. Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics. Proc. Natl Acad. Sci. USA 116, 7718–7722 (2019).

    Google Scholar 

  135. 135.

    Ayemoba, O. & Cuesta, A. Spectroscopic evidence of size-dependent buffering of interfacial pH by cation hydrolysis during CO2 electroreduction. ACS Appl. Mater. Interfaces 9, 27377–27382 (2017).

    Google Scholar 

  136. 136.

    Figueiredo, M. C., Ledezma-Yanez, I. & Koper, M. T. M. In situ spectroscopic study of CO2 electroreduction at copper electrodes in acetonitrile. ACS Catal. 6, 2382–2392 (2016).

    Google Scholar 

  137. 137.

    Eilert, A., Roberts, F. S., Friebel, D. & Nilsson, A. Formation of copper catalysts for CO2 reduction with high ethylene/methane product ratio investigated with in situ x-ray absorption spectroscopy. J. Phys. Chem. Lett. 7, 1466–1470 (2016).

    Google Scholar 

  138. 138.

    Choi, Y. W., Mistry, H. & Roldan Cuenya, B. New insights into working nanostructured electrocatalysts through operando spectroscopy and microscopy. Curr. Opin. Electrochem. 1, 95–103 (2017).

    Google Scholar 

  139. 139.

    Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).

    Google Scholar 

  140. 140.

    Zhu, S., Li, T., Cai, W.-B. & Shao, M. CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett. 4, 682–689 (2019).

    Google Scholar 

  141. 141.

    Rendón-Calle, A., Builes, S. & Calle-Vallejo, F. A brief review of the computational modeling of CO2 electroreduction on Cu electrodes. Curr. Opin. Electrochem. 9, 158–165 (2018).

    Google Scholar 

  142. 142.

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  143. 143.

    Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10, 3722–3730 (2008).

    Google Scholar 

  144. 144.

    Peterson, A. A. et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Google Scholar 

  145. 145.

    Peterson, A. & Nørskov, J. Activity descriptors for CO2 electroreduction to methane on transition metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    Google Scholar 

  146. 146.

    Saravanan, K., Basdogan, Y., Dean, J. & Keith, J. A. Computational investigation of CO2 electroreduction on tin oxide and predictions of Ti, V, Nb and Zr dopants for improved catalysis. J. Mater. Chem. A 5, 11756–11763 (2017).

    Google Scholar 

  147. 147.

    Saravanan, K., Gottlieb, E. & Keith, J. A. Nitrogen-doped nanocarbon materials under electroreduction operating conditions and implications for electrocatalysis of CO2. Carbon 111, 859–866 (2017).

    Google Scholar 

  148. 148.

    Koper, M. T. M. Theory of the transition from sequential to concerted electrochemical proton–electron transfer. Phys. Chem. Chem. Phys. 15, 1399–1407 (2013).

    Google Scholar 

  149. 149.

    Koper, M. T. M. Activity volcanoes for the electrocatalysis of homolytic and heterolytic hydrogen evolution. J. Solid State Electrochem. 20, 895–899 (2016).

    Google Scholar 

  150. 150.

    Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 4–7 (2007).

    Google Scholar 

  151. 151.

    Montemore, M. M. & Medlin, J. W. Scaling relations between adsorption energies for computational screening and design of catalysts. Catal. Sci. Technol. 4, 3748–3761 (2014).

    Google Scholar 

  152. 152.

    Greeley, J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 7, 605–635 (2016).

    Google Scholar 

  153. 153.

    Govindarajan, N., García-Lastra, J. M., Meijer, E. J. & Calle-Vallejo, F. Does the breaking of adsorption-energy scaling relations guarantee enhanced electrocatalysis? Curr. Opin. Electrochem. 8, 110–117 (2018).

    Google Scholar 

  154. 154.

    Calle-Vallejo, F., Krabbe, A. & Garcia-Lastra, J. M. How covalence breaks adsorption-energy scaling relations and solvation restores them. Chem. Sci. 8, 124–130 (2017).

    Google Scholar 

  155. 155.

    Shin, H., Ha, Y. & Kim, H. 2D covalent metals: a new materials domain of electrochemical CO2 conversion with broken scaling relationship. J. Phys. Chem. Lett. 7, 4124–4129 (2016).

    Google Scholar 

  156. 156.

    Hansen, H. A., Varley, J. B., Peterson, A. A. & Norskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

    Google Scholar 

  157. 157.

    Li, Y. & Sun, Q. Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6, 1–19 (2016).

    Google Scholar 

  158. 158.

    Akhade, S. A., Luo, W., Nie, X., Asthagiri, A. & Janik, M. J. Theoretical insight on reactivity trends in CO2 electroreduction across transition metals. Catal. Sci. Technol. 6, 1042–1053 (2016).

    Google Scholar 

  159. 159.

    Cheng, M. J., Kwon, Y., Head-Gordon, M. & Bell, A. T. Tailoring metal-porphyrin-like active sites on graphene to improve the efficiency and selectivity of electrochemical CO2 reduction. J. Phys. Chem. C. 119, 21345–21352 (2015).

    Google Scholar 

  160. 160.

    Khorshidi, A., Violet, J., Hashemi, J. & Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 1, 263–268 (2018).

    Google Scholar 

  161. 161.

    Calle-Vallejo, F. & Koper, M. T. M. Accounting for bifurcating pathways in the screening for CO2 reduction catalysts. ACS Catal. 7, 7346–7351 (2017).

    Google Scholar 

  162. 162.

    Shi, C., Chan, K., Yoo, J. S. & Nørskov, J. K. Barriers of electrochemical CO2 reduction on transition metals. Org. Process Res. Dev. 20, 1424–1430 (2016).

    Google Scholar 

  163. 163.

    Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    Google Scholar 

  164. 164.

    Hussain, J., Jónsson, H. & Skúlason, E. Calculations of product selectivity in electrochemical CO2 reduction calculations of product selectivity in electrochemical CO2 reduction. ACS Catal. 8, 5240–5249 (2018).

    Google Scholar 

  165. 165.

    Gauthier, J. A. et al. Challenges in modeling electrochemical reaction energetics with polarizable continuum models. ACS Catal. 9, 920–931 (2019).

    Google Scholar 

  166. 166.

    Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    Google Scholar 

  167. 167.

    He, Z.-D., Hanselman, S., Chen, Y. X., Koper, M. T. M. & Calle-Vallejo, F. Importance of solvation for the accurate prediction of oxygen reduction activities of Pt-based electrocatalysts. J. Phys. Chem. Lett. 8, 2243–2246 (2017).

    Google Scholar 

  168. 168.

    Tripkovic, V. Thermodynamic assessment of the oxygen reduction activity in aqueous solutions. Phys. Chem. Chem. Phys. 19, 29381–29388 (2017).

    Google Scholar 

  169. 169.

    Ludwig, T. et al. Solvent–adsorbate interactions and adsorbate-specific solvent structure in carbon dioxide reduction on a stepped Cu surface. J. Phys. Chem. C. 123, 5999–6009 (2019).

    Google Scholar 

  170. 170.

    Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Google Scholar 

  171. 171.

    Akhade, S. A., McCrum, I. T. & Janik, M. J. The impact of specifically adsorbed ions on the copper-catalyzed electroreduction of CO2. J. Electrochem. Soc. 163, F477–F484 (2016).

    Google Scholar 

  172. 172.

    Jovanov, Z. P. et al. Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: a theoretical and experimental study of Au–Cd alloys. J. Catal. 343, 215–231 (2016).

    Google Scholar 

  173. 173.

    Cave, E. R. et al. Electrochemical CO2 reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products. Phys. Chem. Chem. Phys. 19, 15856–15863 (2017).

    Google Scholar 

  174. 174.

    Hatsukade, T., Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces. Phys. Chem. Chem. Phys. 16, 13814–13819 (2014).

    Google Scholar 

  175. 175.

    Frese Jr., K. W., Leach, S. C. & Summers, D. P. Electrochemical reduction of aqueous carbon dioxide to methanol. US patent 4609441A (1986).

  176. 176.

    Song, Y. et al. High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. ChemistrySelect 1, 6055–6061 (2016).

    Google Scholar 

Download references

Acknowledgements

The work by M.C.F. was partially funded by Bayer MaterialScience/Covestro. The work by A.J.G. was made possible by financial support of NWO and Shell Global Solutions International B.V., as part of the programme ‘CO2 neutral fuels’ of the Foundation for Fundamental Research on Matter (FOM). F.C.-V. thanks the Spanish MICIU for a Ramón y Cajal contract (RYC-2015-18996) and financial support through the program ‘Units of Excellence María de Maeztu’ (grant MDM-2017–0767).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Federico Calle-Vallejo or Marc T. M. Koper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Birdja, Y.Y., Pérez-Gallent, E., Figueiredo, M.C. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing