Public perceptions of and responses to new energy technologies


Energy’s central place in economic, political and social systems—and the broad impacts that energy choices have on the natural world and public health—mean that new technologies often spur public reactions. Understanding these public responses and their drivers is important, as public support can influence new technology adoption and deployment. Here I review the literature on public perceptions of and responses to a wide range of new energy technologies. Unlike previous reviews that tend to focus on particular technologies or types of technologies, this Review covers both large-scale energy infrastructure projects, such as utility-scale wind and solar, fossil fuel extraction and marine renewables, as well as small-scale, ‘consumer-facing’ technologies such as electric vehicles, rooftop solar and smart meters. This approach reveals broad trends that may facilitate communication between policymakers, technologists and the public, and support the transition to a more sustainable energy system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1


  1. 1.

    IPCC Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (World Meteorological Organization, 2018).

  2. 2.

    Ansolabehere, S. & Konisky, D. M. Cheap and Clean: How Americans Think about Energy in the Age of Global Warming (MIT Press, 2014).

  3. 3.

    Rand, J. & Hoen, B. Thirty years of North American wind energy acceptance research: What have we learned? Energy Res. Soc. Sci. 29, 135–148 (2017).

    Google Scholar 

  4. 4.

    Hess, D. J. & Coley, J. S. Wireless smart meters and public acceptance: the environment, limited choices, and precautionary politics. Public Underst. Sci. 23, 688–702 (2014).

    Google Scholar 

  5. 5.

    Slovic, P., Fischhoff, B. & Lichtenstein, S. Why study risk perception? Risk Anal. 2, 83–93 (2006).

    Google Scholar 

  6. 6.

    Bauer, M. W. Editorial. Public Underst. Sci. 18, 378–382 (2009).

    Google Scholar 

  7. 7.

    Clarke, C. E. et al. Public opinion on energy development: the interplay of issue framing, top-of-mind associations, and political ideology. Energy Policy 81, 131–140 (2015).

    Google Scholar 

  8. 8.

    Yin, R. K. Case Study Research and Applications: Design and Methods (SAGE, 2017).

  9. 9.

    Ellis, G., Barry, J. & Robinson, C. Many ways to say ‘no’, different ways to say ‘yes’: applying Q-Methodology to understand public acceptance of wind farm proposals. J. Environ. Plann. Manag. 50, 517–551 (2007).

    Google Scholar 

  10. 10.

    Hui, I., Cain, B. E. & Dabiri, J. O. Public receptiveness of vertical axis wind turbines. Energy Policy 112, 258–271 (2018).

    Google Scholar 

  11. 11.

    Rothensee, M. in The Internet of Things Vol. 4952 (eds Floerkemeier, C. et al.) 123–139 (Springer, 2008).

  12. 12.

    Thomas, M., Partridge, T., Harthorn, B. H. & Pidgeon, N. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK. Nat. Energy 2, 17054 (2017).

    Google Scholar 

  13. 13.

    Balta-Ozkan, N., Davidson, R., Bicket, M. & Whitmarsh, L. The development of smart homes market in the UK. Energy 60, 361–372 (2013).

    Google Scholar 

  14. 14.

    Klick, H. & Smith, E. R. A. N. Public understanding of and support for wind power in the United States. Renew. Energy 35, 1585–1591 (2010).

    Google Scholar 

  15. 15.

    Thomas, M. et al. Public perceptions of hydraulic fracturing for shale gas and oil in the United States and Canada. Wiley Interdiscip. Rev. Clim. Change 8, e450 (2017).

    Google Scholar 

  16. 16.

    Wiersma, B. & Devine-Wright, P. Public engagement with offshore renewable energy: a critical review. Wiley Interdiscip. Rev. Clim. Change 5, 493–507 (2014).

    Google Scholar 

  17. 17.

    Spence, A., Demski, C., Butler, C., Parkhill, K. & Pidgeon, N. Public perceptions of demand-side management and a smarter energy future. Nat. Clim. Change 5, 550–554 (2015).

    Google Scholar 

  18. 18.

    Carpini, M. X. D. & Keeter, S. What Americans Know about Politics and Why It Matters (Yale Univ. Press, 1996).

  19. 19.

    Boudet, H. et al. “Fracking” controversy and communication: using national survey data to understand public perceptions of hydraulic fracturing. Energy Policy 65, 57–67 (2014).

    Google Scholar 

  20. 20.

    Boudet, H. S., Zanocco, C. M., Howe, P. D. & Clarke, C. E. The effect of geographic proximity to unconventional oil and gas development on public support for hydraulic fracturing. Risk Anal. 38, 1871–1890 (2018).

    Google Scholar 

  21. 21.

    Energy and Climate Change Public Attitudes Tracker: Wave 25 Summary Report (Department for Business, Energy and Industrial Strategy, 2018);

  22. 22.

    Raimi, K. T. & Carrico, A. R. Understanding and beliefs about smart energy technology. Energy Res. Soc. Sci. 12, 68–74 (2016).

    Google Scholar 

  23. 23.

    Krause, R. M., Carley, S. R., Lane, B. W. & Graham, J. D. Perception and reality: public knowledge of plug-in electric vehicles in 21 U.S. cities. Energy Policy 63, 433–440 (2013).

    Google Scholar 

  24. 24.

    Hargreaves, T., Nye, M. & Burgess, J. Making energy visible: a qualitative field study of how householders interact with feedback from smart energy monitors. Energy Policy 38, 6111–6119 (2010).

    Google Scholar 

  25. 25.

    Smale, R., van Vliet, B. & Spaargaren, G. When social practices meet smart grids: flexibility, grid management, and domestic consumption in The Netherlands. Energy Res. Soc. Sci. 34, 132–140 (2017).

    Google Scholar 

  26. 26.

    Devine-Wright, P. Beyond NIMBYism: towards an integrated framework for understanding public perceptions of wind energy. Wind Energy 8, 125–139 (2005).

    Google Scholar 

  27. 27.

    Espeland, W. N. The Struggle for Water: Politics, Rationality, and Identity in the American Southwest (Univ. Chicago Press, 1998).

  28. 28.

    Whitmarsh, L. et al. UK public perceptions of shale gas hydraulic fracturing: the role of audience, message and contextual factors on risk perceptions and policy support. Appl. Energy 160, 419–430 (2015).

    Google Scholar 

  29. 29.

    Ipsos MORI Quantitative Research into Public Awareness, Attitudes, and Experience of Smart Meters: Wave 4 (Department of Energy and Climate Change, 2014);

  30. 30.

    Carlisle, J. E., Kane, S. L., Solan, D. & Joe, J. C. Support for solar energy: examining sense of place and utility-scale development in California. Energy Res. Soc. Sci. 3, 124–130 (2014).

    Google Scholar 

  31. 31.

    Besley, J. C. & McComas, K. A. Something old and something new: comparing views about nanotechnology and nuclear energy. J. Risk Res. 18, 215–231 (2014).

    Google Scholar 

  32. 32.

    Ho, S. S. et al. Science literacy or value predisposition? A meta-analysis of factors predicting public perceptions of benefits, risks, and acceptance of nuclear energy. Environ. Commun. 13, 457–471 (2018).

    Google Scholar 

  33. 33.

    Stedman, R. C., Evensen, D., O’Hara, S. & Humphrey, M. Comparing the relationship between knowledge and support for hydraulic fracturing between residents of the United States and the United Kingdom. Energy Res. Soc. Sci. 20, 142–148 (2016).

    Google Scholar 

  34. 34.

    Stoutenborough, J. W. & Vedlitz, A. The role of scientific knowledge in the public’s perceptions of energy technology risks. Energy Policy 96, 206–216 (2016).

    Google Scholar 

  35. 35.

    Jacquet, J. B. Landowner attitudes toward natural gas and wind farm development in northern Pennsylvania. Energy Policy 50, 677–688 (2012).

    Google Scholar 

  36. 36.

    Krause, R. M., Carley, S. R., Warren, D. C., Rupp, J. A. & Graham, J. D. “Not in (or under) my backyard”: geographic proximity and public acceptance of carbon capture and storage facilities. Risk Anal. 34, 529–540 (2014).

    Google Scholar 

  37. 37.

    Vasi, I. B., Walker, E. T., Johnson, J. S. & Tan, H. F. “No fracking way!” Documentary film, discursive opportunity, and local opposition against hydraulic fracturing in the United States, 2010 to 2013. Am. Sociol. Rev. 80, 934–959 (2015).

    Google Scholar 

  38. 38.

    Druckman, J. N. & Bolsen, T. Framing, motivated reasoning, and opinions about emergent technologies. J. Commun. 61, 659–688 (2011).

    Google Scholar 

  39. 39.

    Scheufele, D. A. & Lewenstein, B. V. The public and nanotechnology: how citizens make sense of emerging technologies. J. Nanopart. Res. 7, 659–667 (2005).

    Google Scholar 

  40. 40.

    van der Linden, S. A conceptual critique of the cultural cognition thesis. Sci. Commun. 38, 128–138 (2016).

    Google Scholar 

  41. 41.

    Oltra, C. et al. Public responses to CO2 storage sites: lessons from five European cases. Energy Environ. 23, 227–248 (2012).

    Google Scholar 

  42. 42.

    Slovic, P. Perception of risk. Science 236, 280–285 (1987).

    Google Scholar 

  43. 43.

    Stoutenborough, J. W., Vedlitz, A. & Liu, X. The influence of specific risk perceptions on public policy support: an examination of energy policy. Ann. Am. Acad. Pol. Soc. Sci. 658, 102–120 (2015).

    Google Scholar 

  44. 44.

    Rogers, E. M. Diffusion of Innovations 5th edn (Free Press, 2003).

  45. 45.

    Rezvani, Z., Jansson, J. & Bodin, J. Advances in consumer electric vehicle adoption research: a review and research agenda. Transp. Res. D. 34, 122–136 (2015).

    Google Scholar 

  46. 46.

    Schelly, C. Residential solar electricity adoption: What motivates, and what matters? A case study of early adopters. Energy Res. Soc. Sci. 2, 183–191 (2014).

    Google Scholar 

  47. 47.

    Wolske, K. S., Stern, P. C. & Dietz, T. Explaining interest in adopting residential solar photovoltaic systems in the United States: toward an integration of behavioral theories. Energy Res. Soc. Sci. 25, 134–151 (2017).

    Google Scholar 

  48. 48.

    Haggett, C. Over the sea and far away? A consideration of the planning, politics and public perception of offshore wind farms. J. Environ. Policy Plann. 10, 289–306 (2008).

    Google Scholar 

  49. 49.

    Selma, L., Seigo, O., Dohle, S. & Siegrist, M. Public perception of carbon capture and storage (CCS): a review. Renew. Sustain. Energy Rev. 38, 848–863 (2014).

    Google Scholar 

  50. 50.

    Jenkins, K., McCauley, D., Heffron, R., Stephan, H. & Rehner, R. Energy justice: a conceptual review. Energy Res. Soc. Sci. 11, 174–182 (2016).

    Google Scholar 

  51. 51.

    Cotton, M. Shale gas — community relations: NIMBY or not? Integrating social factors into shale gas community engagements. Nat. Gas. Electr. 29, 8–12 (2013).

    Google Scholar 

  52. 52.

    Sierzchula, W., Bakker, S., Maat, K. & van Wee, B. The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy Policy 68, 183–194 (2014).

    Google Scholar 

  53. 53.

    Geels, F. W., Berkhout, F. & van Vuuren, D. P. Bridging analytical approaches for low-carbon transitions. Nat. Clim. Change 6, 576–583 (2016).

    Google Scholar 

  54. 54.

    Howe, P. D. & Mathieu, J. L. Age and perceived benefits are associated with willingness to participate in an electric load control program. Preprint at (2018).

  55. 55.

    Sigrin, B., Pless, J. & Drury, E. Diffusion into new markets: evolving customer segments in the solar photovoltaics market. Environ. Res. Lett. 10, 084001 (2015).

    Google Scholar 

  56. 56.

    Finucane, M. L., Slovic, P., Mertz, C. K., Flynn, J. & Satterfield, T. A. Gender, race, and perceived risk: the ‘white male’ effect. Health Risk Soc. 2, 159–172 (2000).

    Google Scholar 

  57. 57.

    McCright, A. M. & Dunlap, R. E. Bringing ideology in: the conservative white male effect on worry about environmental problems in the USA. J. Risk Res. 16, 211–226 (2013).

    Google Scholar 

  58. 58.

    Jacques, P. J., Dunlap, R. E. & Freeman, M. The organisation of denial: conservative think tanks and environmental scepticism. Environ. Polit. 17, 349–385 (2008).

    Google Scholar 

  59. 59.

    Farrell, J. Corporate funding and ideological polarization about climate change. Proc. Natl Acad. Sci. USA 113, 92–97 (2016).

    Google Scholar 

  60. 60.

    Davis, C. & Fisk, J. M. Energy abundance or environmental worries? Analyzing public support for fracking in the United States. Rev. Policy Res. 31, 1–16 (2014).

    Google Scholar 

  61. 61.

    Clarke, C. E. et al. How geographic distance and political ideology interact to influence public perception of unconventional oil/natural gas development. Energy Policy 97, 301–309 (2016).

    Google Scholar 

  62. 62.

    Brown, E., Hartman, K., Borick, C. P., Rabe, B. G. & Ivacko, T. M. The National Surveys on Energy and Environment Public Opinion on Fracking: Perspectives from Michigan and Pennsylvania (May 2013) (Center for Local, State, and Urban Policy, 2013).

  63. 63.

    O’Connor, C. D. & Fredericks, K. Citizen perceptions of fracking: the risks and opportunities of natural gas development in Canada. Energy Res. Soc. Sci. 42, 61–69 (2018).

    Google Scholar 

  64. 64.

    Gravelle, T. B. & Lachapelle, E. Politics, proximity and the pipeline: mapping public attitudes toward Keystone XL. Energy Policy 83, 99–108 (2015).

    Google Scholar 

  65. 65.

    Baiocchi-Wagner, E. A. & Talley, A. E. The role of family communication in individual health attitudes and behaviors concerning diet and physical activity. Health Commun. 28, 193–205 (2013).

    Google Scholar 

  66. 66.

    Howell, E. L. et al. How do U.S. state residents form opinions about ‘fracking’ in social contexts? A multilevel analysis. Energy Policy 106, 345–355 (2017).

    Google Scholar 

  67. 67.

    Graziano, M. & Gillingham, K. Spatial patterns of solar photovoltaic system adoption: the influence of neighbors and the built environment. J. Econ. Geogr. 15, 815–839 (2015).

    Google Scholar 

  68. 68.

    Meckling, J. & Nahm, J. The politics of technology bans: industrial policy competition and green goals for the auto industry. Energy Policy 126, 470–479 (2019).

    Google Scholar 

  69. 69.

    Bell, S. E. & York, R. Community economic identity: the coal industry and ideology construction in West Virginia. Rural Sociol. 75, 111–143 (2010).

    Google Scholar 

  70. 70.

    Vasi, I. B. Winds of Change: The Environmental Movement and the Global Development of the Wind Energy Industry. (Oxford Univ. Press, 2011).

  71. 71.

    Boudet, H. S. From NIMBY to NIABY: regional mobilization against liquefied natural gas in the United States. Environ. Polit. 20, 786–806 (2011).

    Google Scholar 

  72. 72.

    Evensen, D. & Stedman, R. Beliefs about impacts matter little for attitudes on shale gas development. Energy Policy 109, 10–21 (2017).

    Google Scholar 

  73. 73.

    Batel, S. & Devine-Wright, P. Towards a better understanding of people’s responses to renewable energy technologies: insights from social representations theory. Public Underst. Sci. 24, 311–325 (2015).

    Google Scholar 

  74. 74.

    Moscovici, S. in Social Cognition (ed. Forgas, J.) 181–209 (Academic Press, 1981).

  75. 75.

    Bugden, D., Evensen, D. & Stedman, R. A drill by any other name: social representations, framing, and legacies of natural resource extraction in the fracking industry. Energy Res. Soc. Sci. 29, 62–71 (2017).

    Google Scholar 

  76. 76.

    McAdam, D. & Boudet, H. Putting Social Movements in their Place: Explaining Opposition to Energy Projects in the United States, 2000–2005 (Cambridge Univ. Press, 2012).

  77. 77.

    Boudet, H., Bugden, D., Zanocco, C. & Maibach, E. The effect of industry activities on public support for ‘fracking’. Environ. Polit. 25, 593–612 (2016).

    Google Scholar 

  78. 78.

    Giordono, L. S., Boudet, H. S., Karmazina, A., Taylor, C. L. & Steel, B. S. Opposition “overblown”? Community response to wind energy siting in the western United States. Energy Res. Soc. Sci. 43, 119–131 (2018).

    Google Scholar 

  79. 79.

    Cotton, M. & Devine-Wright, P. Putting pylons into place: a UK case study of public perspectives on the impacts of high voltage overhead transmission lines. J. Environ. Plann. Manag. 56, 1225–1245 (2013).

    Google Scholar 

  80. 80.

    Yu, J., Wang, Z., Majumdar, A. & Rajagopal, R. DeepSolar: A machine learning framework to efficiently construct a solar deployment database in the United States. Joule 2, 2605–2617 (2018).

    Google Scholar 

  81. 81.

    Sovacool, B. K., Kivimaa, P., Hielscher, S. & Jenkins, K. Vulnerability and resistance in the United Kingdom’s smart meter transition. Energy Policy 109, 767–781 (2017).

    Google Scholar 

  82. 82.

    Devine-Wright, P. Place attachment and public acceptance of renewable energy: a tidal energy case study. J. Environ. Psychol. 31, 336–343 (2011).

    Google Scholar 

  83. 83.

    Devine-Wright, P. Rethinking NIMBYism: the role of place attachment and place identity in explaining place-protective action. J. Community Appl. Soc. Psychol. 19, 426–441 (2009).

    Google Scholar 

  84. 84.

    Wright, R. A. & Boudet, H. S. To act or not to act: context, capability, and community response to environmental risk. Am. J. Sociol. 118, 728–777 (2012).

    Google Scholar 

  85. 85.

    Unruh, G. C. Understanding carbon lock-in. Energy Policy 28, 817–830 (2000).

    Google Scholar 

  86. 86.

    Stedman, R. C. Toward a social psychology of place: predicting behavior from place-based cognitions, attitude, and identity. Environ. Behav. 34, 561–581 (2002).

    Google Scholar 

  87. 87.

    Jacquet, J. B. & Stedman, R. C. The risk of social-psychological disruption as an impact of energy development and environmental change. J. Environ. Plann. Manag. 57, 1285–1304 (2014).

    Google Scholar 

  88. 88.

    Vorkinn, M. & Riese, H. Environmental concern in a local context: the significance of place attachment. Environ. Behav. 33, 249–263 (2001).

    Google Scholar 

  89. 89.

    Devine-Wright, P. & Howes, Y. Disruption to place attachment and the protection of restorative environments: a wind energy case study. J. Environ. Psychol. 30, 271–280 (2010).

    Google Scholar 

  90. 90.

    McLachlan, C. ‘You don’t do a chemistry experiment in your best china’: symbolic interpretations of place and technology in a wave energy case. Energy Policy 37, 5342–5350 (2009).

    Google Scholar 

  91. 91.

    Willow, A. J., Zak, R., Vilaplana, D. & Sheeley, D. The contested landscape of unconventional energy development: a report from Ohio’s shale gas country. J. Environ. Stud. Sci. 4, 56–64 (2014).

    Google Scholar 

  92. 92.

    Wolsink, M. Social acceptance revisited: gaps, questionable trends, and an auspicious perspective. Energy Res. Soc. Sci. 46, 287–295 (2018).

    Google Scholar 

  93. 93.

    Wüstenhagen, R., Wolsink, M. & Bürer, M. J. Social acceptance of renewable energy innovation: an introduction to the concept. Energy Policy 35, 2683–2691 (2007).

    Google Scholar 

  94. 94.

    Bomberg, E. Shale we drill? Discourse dynamics in UK fracking debates. J. Environ. Policy Plann. 19, 72–88 (2017).

    Google Scholar 

  95. 95.

    Whitton, J., Brasier, K., Charnley-Parry, I. & Cotton, M. Shale gas governance in the United Kingdom and the United States: opportunities for public participation and the implications for social justice. Energy Res. Soc. Sci. 26, 11–22 (2017).

    Google Scholar 

  96. 96.

    Strupeit, L. & Palm, A. Overcoming barriers to renewable energy diffusion: business models for customer-sited solar photovoltaics in Japan, Germany and the United States. J. Clean. Prod. 123, 124–136 (2016).

    Google Scholar 

  97. 97.

    Beierle, T. C. & Cayford, J. Democracy in Practice: Public Participation in Environmental Decisions (Routledge, 2002).

  98. 98.

    Agterbosch, S., Meertens, R. M. & Vermeulen, W. J. The relative importance of social and institutional conditions in the planning of wind power projects. Renew. Sustain. Energy Rev. 13, 393–405 (2009).

    Google Scholar 

  99. 99.

    Firestone, J. et al. Reconsidering barriers to wind power projects: community engagement, developer transparency and place. J. Environ. Policy Plann. 20, 370–386 (2017).

    Google Scholar 

  100. 100.

    Garvin, D. A. & Roberto, M. A. What you don’t know about making decisions. Harv. Bus. Rev. 79, 108–119 (2001).

    Google Scholar 

  101. 101.

    Bell, D., Gray, T. & Haggett, C. The ‘social gap’ in wind farm siting decisions: explanations and policy responses. Environ. Polit. 14, 460–477 (2005).

    Google Scholar 

  102. 102.

    Jegen, M. & Philion, X. D. Power and smart meters: a political perspective on the social acceptance of energy projects. Can. Public Adm. 60, 68–88 (2017).

    Google Scholar 

  103. 103.

    Boudet, H. S. An “insiteful” comparison: contentious politics in liquefied natural gas facility siting in the U.S. MIT Proj. 11, 47–76 (2016).

    Google Scholar 

  104. 104.

    McAdam, D. et al. “Site fights”: explaining opposition to pipeline projects in the developing world. Sociol. Forum 25, 410–427 (2010).

    Google Scholar 

  105. 105.

    Eaton, E. & Kinchy, A. Quiet voices in the fracking debate: ambivalence, nonmobilization, and individual action in two extractive communities (Saskatchewan and Pennsylvania). Energy Res. Soc. Sci. 20, 22–30 (2016).

    Google Scholar 

  106. 106.

    Boudet, H. S. & Ortolano, L. A tale of two sitings: contentious politics in liquefied natural gas facility siting in California. J. Plann. Educ. Res. 30, 5–21 (2010).

    Google Scholar 

  107. 107.

    Arnstein, S. R. A ladder of citizen participation. J. Am. Inst. Plann. 35, 216–224 (1969).

    Google Scholar 

  108. 108.

    Gilley, B. Authoritarian environmentalism and China’s response to climate change. Environ. Polit. 21, 287–307 (2012).

    Google Scholar 

  109. 109.

    Yang, C.-J. Launching strategy for electric vehicles: lessons from China and Taiwan. Technol. Forecast. Soc. Change 77, 831–834 (2010).

    Google Scholar 

  110. 110.

    Aczel, M. R. & Makuch, K. E. The lay of the land: the public, participation and policy in China’s fracking frenzy. Extr. Ind. Soc. 5, 508–514 (2018).

    Google Scholar 

  111. 111.

    Sher, C. & Wu, C. Fracking in China: community impacts and public support of shale gas development. J. Contemp. China 27, 626–641 (2018).

    Google Scholar 

  112. 112.

    Yu, C.-H., Huang, S.-K., Qin, P. & Chen, X. Local residents’ risk perceptions in response to shale gas exploitation: evidence from China. Energy Policy 113, 123–134 (2018).

    Google Scholar 

  113. 113.

    Jaspal, R., Nerlich, B. & Lemańcyzk, S. Fracking in the Polish press: geopolitics and national identity. Energy Policy 74, 253–261 (2014).

    Google Scholar 

  114. 114.

    Lis, A. Co-production of shale gas publics in Poland and the negotiation of state citizens relations. Extr. Ind. Soc. 5, 673–681 (2018).

    Google Scholar 

  115. 115.

    Haggerty, J. H., Kroepsch, A. C., Walsh, K. B., Smith, K. K. & Bowen, D. W. Geographies of impact and the impacts of geography: unconventional oil and gas in the American West. Extr. Ind. Soc. 5, 619–633 (2018).

    Google Scholar 

  116. 116.

    Stoffle, R. W., Stone, J. V. & Heeringa, S. G. Mapping risk perception shadows: defining the locally affected population for a low-level radioactive waste facility in Michigan. Environ. Prof. 15, 316–333 (1993).

    Google Scholar 

  117. 117.

    Pasqualetti, M. J. Wind energy landscapes: society and technology in the California Desert. Soc. Nat. Resour. 14, 689–699 (2001).

    Google Scholar 

  118. 118.

    Visschers, V. H. M. & Siegrist, M. Find the differences and the similarities: relating perceived benefits, perceived costs and protected values to acceptance of five energy technologies. J. Environ. Psychol. 40, 117–130 (2014).

    Google Scholar 

  119. 119.

    Lesbirel, S. H. NIMBY Politics in Japan: Energy Siting and the Management of Environmental Conflict (Cornell Univ. Press, 1998).

  120. 120.

    Fraune, C. & Knodt, M. Sustainable energy transformations in an age of populism, post-truth politics, and local resistance. Energy Res. Soc. Sci. 43, 1–7 (2018).

    Google Scholar 

  121. 121.

    Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50, 179–211 (1991).

    Google Scholar 

  122. 122.

    Stern, P. C. Toward a coherent theory of environmentally significant behavior. J. Soc. Issues 56, 407–424 (2000).

    Google Scholar 

  123. 123.

    Shove, E., Pantzar, M. & Watson, M. The Dynamics of Social Practice: Everyday Life and How it Changes (SAGE, 2012).

  124. 124.

    Shove, E. & Walker, G. What is energy for? Social practice and energy demand. Theory Cult. Soc. 31, 41–58 (2014).

    Google Scholar 

  125. 125.

    Strengers, Y. Peak electricity demand and social practice theories: reframing the role of change agents in the energy sector. Energy Policy 44, 226–234 (2012).

    Google Scholar 

  126. 126.

    Shove, E. Beyond the ABC: climate change policy and theories of social change. Environ. Plann. A 42, 1273–1285 (2010).

    Google Scholar 

  127. 127.

    Strengers, Y. in Smart Energy Technologies in Everyday Life: Smart Utopia? (ed. Strengers, Y.) 34–52 (Palgrave Macmillan, 2013).

  128. 128.

    Devine-Wright, P. et al. A conceptual framework for understanding the social acceptance of energy infrastructure: insights from energy storage. Energy Policy 107, 27–31 (2017).

    Google Scholar 

Download references


I thank J. Flora and D. Schaffer for their thoughtful insights.

Author information



Corresponding author

Correspondence to Hilary S. Boudet.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boudet, H.S. Public perceptions of and responses to new energy technologies. Nat Energy 4, 446–455 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing