Comparative net energy analysis of renewable electricity and carbon capture and storage


Carbon capture and storage (CCS) for fossil-fuel power plants is perceived as a critical technology for climate mitigation. Nevertheless, limited installed capacity to date raises concerns about the ability of CCS to scale sufficiently. Conversely, scalable renewable electricity installations—solar and wind—are already deployed at scale and have demonstrated a rapid expansion potential. Here we show that power-sector CO2 emission reductions accomplished by investing in renewable technologies generally provide a better energetic return than CCS. We estimate the electrical energy return on energy invested ratio of CCS projects, accounting for their operational and infrastructural energy penalties, to range between 6.6:1 and 21.3:1 for 90% capture ratio and 85% capacity factor. These values compare unfavourably with dispatchable scalable renewable electricity with storage, which ranges from 9:1 to 30+:1 under realistic configurations. Therefore, renewables plus storage provide a more energetically effective approach to climate mitigation than constructing CCS fossil-fuel power stations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Difference in process mass and energy flow between a conventional power plant and one with CCS.
Fig. 2: EROEI for coal and gas power plants under a range of CCS energy penalties.
Fig. 3: EROEI contours for scalable dispatchable renewables with a range of energy storage configurations.
Fig. 4: Comparison of adjusted EROEI for carbon capture and dispatchable renewables with energy storage.

Data availability

All data used in this analysis were based on published studies that are duly referenced in the text and the related tables. Any assumptions, adjustments and normalizations are described in the captions or the text. The annotated code used to run the analysis and develop the figures can be openly accessed on Github ( The corresponding author will make available any additional information upon reasonable request.


  1. 1.

    Technology Roadmap: Carbon Capture and Storage (International Energy Agency, 2013).

  2. 2.

    van Vuuren, D. P. et al. Carbon budgets and energy transition pathways. Environ. Res. Lett. 11, 1–12 (2016).

    Google Scholar 

  3. 3.

    Koelbl, B. S., van den Broek, M. A., Faaij, A. P. C. & van Vuuren, D. P. Uncertainty in carbon capture and storage (CCS) deployment projections: a cross-model comparison exercise. Climatic Change 123, 461–476 (2014).

  4. 4.

    Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 3, 1–115 (2018).

    Google Scholar 

  5. 5.

    Kaya, A., Csala, D. & Sgouridis, S. Constant elasticity of substitution functions for energy modeling in general equilibrium integrated assessment models: a critical review and recommendations. Climatic Change 43, 225–214 (2017).

    Google Scholar 

  6. 6.

    CSI Carbon Capture and Sequestration Project Database (MIT, 2017);

  7. 7.

    Roadmap for Carbon Capture and Storage Demonstration and Deployment in the People’s Republic of China (Asian Development Bank, 2015).

  8. 8.

    Renewables 2016 Global Status Report (Renewable Energy Policy Network for the 21st Century, 2016).

  9. 9.

    Reiner, D. M. Learning through a portfolio of carbon capture and storage demonstration projects. Nat. Energy 1, 15011–15017 (2016).

    Article  Google Scholar 

  10. 10.

    Sanchez, D. L. & Kammen, D. M. A commercialization strategy for carbon-negative energy. Nat. Energy 1, 15002–15004 (2016).

    Article  Google Scholar 

  11. 11.

    Murphy, D. J. & Hall, C. A. S. Year in review—EROI or energy return on (energy) invested. Ann. NY Acad. Sci. 1185, 102–118 (2010).

    Article  Google Scholar 

  12. 12.

    Murphy, D. J., Hall, C. A. S., Dale, M. & Cleveland, C. Order from chaos: a preliminary protocol for determining the EROI of fuels. Sustainability 3, 1888–1907 (2011).

    Article  Google Scholar 

  13. 13.

    Carbajales-Dale, M., Barnhart, C. J., Brandt, A. R. & Benson, S. M. A better currency for investing in a sustainable future. Nat. Clim. Change 4, 524–527 (2014).

    Article  Google Scholar 

  14. 14.

    Sgouridis, S., Csala, D. & Bardi, U. The sower’s way: quantifying the narrowing net-energy pathways to a global energy transition. Environ. Res. Lett. 11, 1–8 (2016).

    Article  Google Scholar 

  15. 15.

    Sathre, R., Chester, M., Cain, J. & Masanet, E. A framework for environmental assessment of CO2 capture and storage systems. Energy 37, 540–548 (2012).

    Article  Google Scholar 

  16. 16.

    Modahl, I. S., Askham, C., Lyng, K.-A. & Brekke, A. Weighting of environmental trade-offs in CCS—an LCA case study of electricity from a fossil gas power plant with postcombustion CO2 capture, transport and storage. Int. J. Life Cycle Assess. 17, 932–943 (2012).

    Article  Google Scholar 

  17. 17.

    Corsten, M., Ramirez, A., Shen, L., Koornneef, J. & Faaij, A. Environmental impact assessment of CCS chains—lessons learned and limitations from LCA literature. Int. J. Greenh. Gas Control 13, 59–71 (2013).

    Article  Google Scholar 

  18. 18.

    Kong, Y. et al. EROI analysis for direct coal liquefaction without and with CCS: the case of the Shenhua DCL project in China. Energies 8, 786–807 (2015).

    Article  Google Scholar 

  19. 19.

    Viebahn, P. et al. Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany. Int. J. Greenh. Gas Control 1, 121–133 (2007).

    Article  Google Scholar 

  20. 20.

    King, L. C. & van den Bergh, J. C. J. M. Implications of net energy-return-on-investment for a low-carbon energy transition. Nat. Energy 3, 334–340 (2018).

    Article  Google Scholar 

  21. 21.

    Khalilpour, R. & Abbas, A. HEN optimization for efficient retrofitting of coal-fired power plants with postcombustion carbon capture. Int. J. Greenh. Gas Control 5, 189–199 (2011).

    Article  Google Scholar 

  22. 22.

    Schreiber, A., Zapp, P. & Marx, J. Meta-analysis of life cycle assessment studies on electricity generation with carbon capture and storage. J. Ind. Ecol. 16, S155–S168 (2012).

    Article  Google Scholar 

  23. 23.

    Matthews, H. S. & Small, M. J. Extending the boundaries of life‐cycle assessment through environmental economic input–output models. J. Ind. Ecol. 4, 7–10 (2000).

    Article  Google Scholar 

  24. 24.

    Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014).

    Article  Google Scholar 

  25. 25.

    House, K. Z., Harvey, C. F., Aziz, M. J. & Schrag, D. P. The energy penalty of postcombustion CO2 capture & storage and its implications for retrofitting the U.S. installed base. Energy Environ. Sci. 2, 193 (2009).

    Article  Google Scholar 

  26. 26.

    Cost and Performance Comparison Baseline for Fossil Energy Power Plants (National Energy Technology Laboratory, 2013).

  27. 27.

    Sanpasertparnich, T., Idem, R., Bolea, I., deMontigny, D. & Tontiwachwuthikul, P. Integration of postcombustion capture and storage into a pulverized coal-fired power plant. Int. J. Greenh. Gas Control 4, 499–510 (2010).

    Article  Google Scholar 

  28. 28.

    Abu-Zahra, M. R. M., Schneiders, L. H. J., Niederer, J. P. M., Feron, P. H. M. & Versteeg, G. F. CO2 capture from power plants. Int. J. Greenh. Gas Control 1, 37–46 (2007).

    Article  Google Scholar 

  29. 29.

    El-Suleiman, A., Anosike, N. & Pilidis, P. A preliminary assessment of the initial compression power requirement in CO2 pipeline ‘carbon capture and storage (CCS) technologies’. Technologies 4, 15–19 (2016).

    Article  Google Scholar 

  30. 30.

    Apostoleris, H., Sgouridis, S., Stefancich, M. & Chiesa, M. Evaluating the factors that led to low-priced solar electricity projects in the Middle East. Nat. Energy 3, 1109–1114 (2018).

    Article  Google Scholar 

  31. 31.

    Bhandari, K. P., Collier, J. M., Ellingson, R. J. & Apul, D. S. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: a systematic review and meta-analysis. Renew. Sustain. Energ. Rev. 47, 133–141 (2015).

    Article  Google Scholar 

  32. 32.

    Leccisi, E., Raugei, M. & Fthenakis, V. The energy and environmental performance of ground-mounted photovoltaic systems—a timely update. Energies 9, 622–13 (2016).

    Article  Google Scholar 

  33. 33.

    Raugei, M. et al. Energy return on energy invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation—a comprehensive response. Energy Policy 102, 377–384 (2017).

    Article  Google Scholar 

  34. 34.

    Koppelaar, R. H. E. M. Solar-PV energy payback and net energy: meta-assessment of study quality, reproducibility, and results harmonization. Renew. Sustain. Energy Rev. 72, 1241–1255 (2016).

    Article  Google Scholar 

  35. 35.

    Görig, M. & Breyer, C. Energy learning curves of PV systems. Environ. Prog. Sustain. Energy 35, 914–923 (2016).

    Article  Google Scholar 

  36. 36.

    Davidsson, S., Höök, M. & Wall, G. A review of life cycle assessments on wind energy systems. Int. J. Life Cycle Assess. 17, 729–742 (2012).

    Article  Google Scholar 

  37. 37.

    Dale, M. A comparative analysis of energy costs of photovoltaic, solar thermal, and wind electricity generation technologies. Appl. Sci. 3, 325–337 (2013).

    Article  Google Scholar 

  38. 38.

    Kubiszewski, I., Cleveland, C. J. & Endres, P. K. Meta-analysis of net energy return for wind power systems. Renew. Energy 35, 218–225 (2010).

    Article  Google Scholar 

  39. 39.

    Dupont, E., Koppelaar, R. & Jeanmart, H. Global available wind energy with physical and energy return on investment constraints. Appl. Energy 209, 322–338 (2017).

    Article  Google Scholar 

  40. 40.

    Hirth, L., Ueckerdt, F. & Edenhofer, O. Integration costs revisited—an economic framework for wind and solar variability. Renew. Energy 74, 925–939 (2015).

    Article  Google Scholar 

  41. 41.

    Jaehnert, S., Wolfgang, O., Farahmand, H., Völler, S. & Huertas-Hernando, D. Transmission expansion planning in Northern Europe in 2030—methodology and analyses. Energy Policy 61, 125–139 (2013).

    Article  Google Scholar 

  42. 42.

    Jacobsen, H. K. & Schröder, S. T. Curtailment of renewable generation economic optimality and incentives. Energy Policy 49, 663–675 (2012).

    Article  Google Scholar 

  43. 43.

    Ueckerdt, F., Brecha, R. & Luderer, G. Analyzing major challenges of wind and solar variability in power systems. Renew. Energy 81, 1–10 (2015).

    Article  Google Scholar 

  44. 44.

    Frew, B. A., Becker, S., Dvorak, M. J., Andresen, G. B. & Jacobson, M. Z. Flexibility mechanisms and pathways to a highly renewable US electricity future. Energy 101, 65–78 (2016).

    Article  Google Scholar 

  45. 45.

    Gils, H. C., Scholz, Y., Pregger, T., de Tena, D. L. & Heide, D. Integrated modelling of variable renewable energy-based power supply in Europe. Energy 123, 173–188 (2017).

    Article  Google Scholar 

  46. 46.

    Barnhart, C. J., Dale, M., Brandt, A. R. & Benson, S. M. The energetic implications of curtailing versus storing solar- and wind-generated electricity. Energy Environ. Sci. 6, 2804 (2013).

    Article  Google Scholar 

  47. 47.

    Koller, M., Borsche, T., Ulbig, A. & Andersson, G. Review of grid applications with the Zurich 1 MW battery energy storage system. Electr. Power Syst. Res. 120, 128–135 (2015).

    Article  Google Scholar 

  48. 48.

    Blanco, H. & Faaij, A. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renew. Sust. Energy Rev. 81, 1049–1086 (2018).

    Article  Google Scholar 

  49. 49.

    Breyer, C. et al. On the role of solar photovoltaics in global energy transition scenarios. Prog. Photovolt. 25, 727–745 (2017).

    Article  Google Scholar 

  50. 50.

    Hagens, N. J. & Mulder, K. in Biofuels, Solar and Wind as Renewable Energy Systems: Benefits and Risks (ed. Pimentel, D.) Ch. 12, 295–319 (Springer, 2008).

  51. 51.

    Zhang, Y. & Colosi, L. M. Practical ambiguities during calculation of energy ratios and their impacts on life cycle assessment calculations. Energy Policy 57, 630–633 (2013).

    Article  Google Scholar 

  52. 52.

    Metz, B., Davidson, O., De Coninck, H., Loos, M. & Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge Univ. Press, 2005).

  53. 53.

    Mokhtar, M. et al. Solar-assisted post-combustion carbon capture feasibility study. Appl. Energy 92, 668–676 (2012).

    Article  Google Scholar 

  54. 54.

    Harkin, T., Hoadley, A. & Hooper, B. Reducing the energy penalty of CO2 capture and compression using pinch analysis. J. Clean. Prod. 18, 857–866 (2010).

    Article  Google Scholar 

  55. 55.

    EIO-LCA: Free, Fast, Easy Life Cycle Assessment (Carnegie Mellon University, Green Design Institute, accessed 5 June 2018);

  56. 56.

    Producer Price Index (PPI) (Bureau of Labor Statistics, accessed 5 June 2018);

  57. 57.

    Knoope, M. M. J., Ramírez, A. & Faaij, A. P. C. A state-of-the-art review of techno-economic models predicting the costs of CO2 pipeline transport. Int. J. Greenh. Gas Control 16, 241–270 (2013).

    Article  Google Scholar 

  58. 58.

    Chandel, M. K., Pratson, L. F. & Williams, E. Potential economies of scale in CO2 transport through use of a trunk pipeline. Energy Convers. Manage. 51, 2825–2834 (2010).

    Article  Google Scholar 

  59. 59.

    Kolster, C., Mechleri, E., Krevor, S. & Mac Dowell, N. The role of CO2 purification and transport networks in carbon capture and storage cost reduction. Int. J. Greenh. Gas Control 58, 127–141 (2017).

    Article  Google Scholar 

  60. 60.

    Knoope, M. M. J., Ramírez, A. & Faaij, A. P. C. The influence of uncertainty in the development of a CO2 infrastructure network. Appl. Energy 158, 332–347 (2015).

    Article  Google Scholar 

  61. 61.

    Mechleri, E., Brown, S., Fennell, P. S. & Mac Dowell, N. CO2 capture and storage (CCS) cost reduction via infrastructure right-sizing. Chem. Eng. Res. Des. 119, 130–139 (2017).

    Article  Google Scholar 

  62. 62.

    Raugei, M. Net energy analysis must not compare apples and oranges. Nat. Energy 4, 86–88 (2019).

    Article  Google Scholar 

  63. 63.

    Freise, J. The EROI of conventional Canadian natural gas production. Sustainability 3, 2080–2104 (2011).

    Article  Google Scholar 

  64. 64.

    Sell, B., Murphy, D. & Hall, C. A. S. Energy return on energy invested for tight gas wells in the Appalachian Basin, United States of America. Sustainability 3, 1986–2008 (2011).

    Article  Google Scholar 

  65. 65.

    Yaritani, H. & Matsushima, J. Analysis of the energy balance of shale gas development. Energies 7, 2207–2227 (2014).

    Article  Google Scholar 

  66. 66.

    Poisson, A. & Hall, C. Time series EROI for Canadian oil and gas. Energies 6, 5940–5959 (2013).

    Article  Google Scholar 

  67. 67.

    Hu, Y., Hall, C. A. S., Wang, J., Feng, L. & Poisson, A. Energy return on investment (EROI) of China. Energy 54, 352–364 (2013).

    Article  Google Scholar 

  68. 68.

    Hall, C. A. S., Lambert, J. G. & Balogh, S. B. EROI of different fuels and the implications for society. Energy Policy 64, 141–152 (2014).

    Article  Google Scholar 

  69. 69.

    Barnhart, C. J. & Benson, S. M. On the importance of reducing the energetic and material demands of electrical energy storage. Energy Environ. Sci. 6, 1083–10 (2013).

    Article  Google Scholar 

  70. 70.

    Wendel, C. H., Kazempoor, P. & Braun, R. J. Novel electrical energy storage system based on reversible solid oxide cells: system design and operating conditions. J. Power Sources 276, 133–144 (2015).

    Article  Google Scholar 

  71. 71.

    Pellow, M. A., Emmott, C. J. M., Barnhart, C. J. & Benson, S. M. Hydrogen or batteries for grid storage? A net energy analysis. Energy Environ. Sci. 8, 1938–1952 (2015).

    Article  Google Scholar 

Download references


We thank the organizers and participants of the ECI CO2 Summit for their comments and discussion, and especially J. Wilcox and N. McDowell for their feedback on the original idea. We also thank Masdar Institute for supporting our participation. M.C. acknowledges the support of the Arctic Center for Sustainable Energy (ARC), UiT Arctic University of Norway through grant no. 310059.

Author information




S.S. conceived the research idea, conducted the initial analysis, collected data and authored the majority of the text. M.C.-D. authored parts of the text, reviewed the analysis, proposed changes and contributed to data collection. D.C. developed the sensitivity analysis models and the code for the figures, and checked and contributed to the analysis. U.B. reviewed and edited the manuscript and contributed parts of the text. M.C. reviewed and edited the manuscript and proposed changes for its organization and structure.

Corresponding author

Correspondence to Sgouris Sgouridis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Supplementary Note, Supplementary Figs. 1–3, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sgouridis, S., Carbajales-Dale, M., Csala, D. et al. Comparative net energy analysis of renewable electricity and carbon capture and storage. Nat Energy 4, 456–465 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing