Data-driven prediction of battery cycle life before capacity degradation


Accurately predicting the lifetime of complex, nonlinear systems such as lithium-ion batteries is critical for accelerating technology development. However, diverse aging mechanisms, significant device variability and dynamic operating conditions have remained major challenges. We generate a comprehensive dataset consisting of 124 commercial lithium iron phosphate/graphite cells cycled under fast-charging conditions, with widely varying cycle lives ranging from 150 to 2,300 cycles. Using discharge voltage curves from early cycles yet to exhibit capacity degradation, we apply machine-learning tools to both predict and classify cells by cycle life. Our best models achieve 9.1% test error for quantitatively predicting cycle life using the first 100 cycles (exhibiting a median increase of 0.2% from initial capacity) and 4.9% test error using the first 5 cycles for classifying cycle life into two groups. This work highlights the promise of combining deliberate data generation with data-driven modelling to predict the behaviour of complex dynamical systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Poor predictive performance of features based on discharge capacity in the first 100 cycles.
Fig. 2: High performance of features based on voltage curves from the first 100 cycles.
Fig. 3: Observed and predicted cycle lives for several implementations of the feature-based model.
Fig. 4: Transformations of voltage–capacity discharge curves for three fast-charged cells that were tested with periodic slow diagnostic cycles.
Fig. 5: Prediction error as a function of cycle indices.

Data availability

The datasets used in this study are available at

Code availability

Code for data processing is available at Code for the modelling work is available from the corresponding authors upon request.


  1. 1.

    Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  Google Scholar 

  2. 2.

    Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015).

    Article  Google Scholar 

  3. 3.

    Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article  Google Scholar 

  4. 4.

    Peterson, S. B., Apt, J. & Whitacre, J. F. Lithium-ion battery cell degradation resulting from realistic vehicle and vehicle-to-grid utilization. J. Power Sources 195, 2385–2392 (2010).

    Article  Google Scholar 

  5. 5.

    Ramadesigan, V. et al. Modeling and simulation of lithium-ion batteries from a systems engineering perspective. J. Electrochem. Soc. 159, R31–R45 (2012).

    Article  Google Scholar 

  6. 6.

    Waag, W., Fleischer, C. & Sauer, D. U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 258, 321–339 (2014).

    Article  Google Scholar 

  7. 7.

    Paul, S., Diegelmann, C., Kabza, H. & Tillmetz, W. Analysis of ageing inhomogeneities in lithium-ion battery systems. J. Power Sources 239, 642–650 (2013).

    Article  Google Scholar 

  8. 8.

    Schuster, S. F. et al. Nonlinear aging characteristics of lithium-ion cells under different operational conditions. J. Energy Storage 1, 44–53 (2015).

    Article  Google Scholar 

  9. 9.

    Schuster, S. F., Brand, M. J., Berg, P., Gleissenberger, M. & Jossen, A. Lithium-ion cell-to-cell variation during battery electric vehicle operation. J. Power Sources 297, 242–251 (2015).

    Article  Google Scholar 

  10. 10.

    Harris, S. J., Harris, D. J. & Li, C. Failure statistics for commercial lithium ion batteries: a study of 24 pouch cells. J. Power Sources 342, 589–597 (2017).

    Article  Google Scholar 

  11. 11.

    Baumhöfer, T., Brühl, M., Rothgang, S. & Sauer, D. U. Production caused variation in capacity aging trend and correlation to initial cell performance. J. Power Sources 247, 332–338 (2014).

    Article  Google Scholar 

  12. 12.

    Bloom, I. et al. An accelerated calendar and cycle life study of Li-ion cells. J. Power Sources 101, 238–247 (2001).

    Article  Google Scholar 

  13. 13.

    Broussely, M. et al. Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources 97–98, 13–21 (2001).

    Article  Google Scholar 

  14. 14.

    Christensen, J. & Newman, J. A mathematical model for the lithium-ion negative electrode solid electrolyte interphase. J. Electrochem. Soc. 151, A1977 (2004).

    Article  Google Scholar 

  15. 15.

    Pinson, M. B. & Bazant, M. Z. Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. J. Electrochem. Soc. 160, A243–A250 (2012).

    Article  Google Scholar 

  16. 16.

    Arora, P. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes. J. Electrochem. Soc. 146, 3543 (1999).

    Article  Google Scholar 

  17. 17.

    Yang, X.-G., Leng, Y., Zhang, G., Ge, S. & Wang, C.-Y. Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging. J. Power Sources 360, 28–40 (2017).

    Article  Google Scholar 

  18. 18.

    Christensen, J. & Newman, J. Cyclable lithium and capacity loss in Li-ion cells. J. Electrochem. Soc. 152, A818–A829 (2005).

    Article  Google Scholar 

  19. 19.

    Zhang, Q. & White, R. E. Capacity fade analysis of a lithium ion cell. J. Power Sources 179, 793–798 (2008).

    Article  Google Scholar 

  20. 20.

    Wright, R. B. et al. Power fade and capacity fade resulting from cycle-life testing of advanced technology development program lithium-ion batteries. J. Power Sources 119–121, 865–869 (2003).

    Article  Google Scholar 

  21. 21.

    Ramadesigan, V. et al. Parameter estimation and capacity fade analysis of lithium-ion batteries using reformulated models. J. Electrochem. Soc. 158, A1048–A1054 (2011).

    Article  Google Scholar 

  22. 22.

    Cordoba-Arenas, A., Onori, S., Guezennec, Y. & Rizzoni, G. Capacity and power fade cycle-life model for plug-in hybrid electric vehicle lithium-ion battery cells containing blended spinel and layered-oxide positive electrodes. J. Power Sources 278, 473–483 (2015).

    Article  Google Scholar 

  23. 23.

    Burns, J. C. et al. Evaluation of effects of additives in wound Li-ion cells through high precision coulometry. J. Electrochem. Soc. 158, A255–A261 (2011).

    Article  Google Scholar 

  24. 24.

    Burns, J. C. et al. Predicting and extending the lifetime of Li-ion batteries. J. Electrochem. Soc. 160, A1451–A1456 (2013).

    Article  Google Scholar 

  25. 25.

    Chen, C. H., Liu, J. & Amine, K. Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries. J. Power Sources 96, 321–328 (2001).

    Article  Google Scholar 

  26. 26.

    Tröltzsch, U., Kanoun, O. & Tränkler, H.-R. Characterizing aging effects of lithium-ion batteries by impedance spectroscopy. Electrochim. Acta 51, 1664–1672 (2006).

    Article  Google Scholar 

  27. 27.

    Love, C. T., Virji, M. B. V., Rocheleau, R. E. & Swider-Lyons, K. E. State-of-health monitoring of 18650 4S packs with a single-point impedance diagnostic. J. Power Sources 266, 512–519 (2014).

    Article  Google Scholar 

  28. 28.

    Waldmann, T. et al. A mechanical aging mechanism in lithium-ion batteries. J. Electrochem. Soc. 161, A1742–A1747 (2014).

    Article  Google Scholar 

  29. 29.

    Waldmann, T. et al. Influence of cell design on temperatures and temperature gradients in lithium-ion cells: an in operando study. J. Electrochem. Soc. 162, A921–A927 (2015).

    Article  Google Scholar 

  30. 30.

    Bach, T. C. et al. Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression. J. Energy Storage 5, 212–223 (2016).

    Article  Google Scholar 

  31. 31.

    Harris, S. J. & Lu, P. Effects of inhomogeneities—nanoscale to mesoscale—on the durability of Li-ion batteries. J. Phys. Chem. C 117, 6481–6492 (2013).

    Article  Google Scholar 

  32. 32.

    Lewerenz, M., Marongiu, A., Warnecke, A. & Sauer, D. U. Differential voltage analysis as a tool for analyzing inhomogeneous aging: a case study for LiFePO4|graphite cylindrical cells. J. Power Sources 368, 57–67 (2017).

    Article  Google Scholar 

  33. 33.

    Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 573, 73–77 (2016).

    Article  Google Scholar 

  34. 34.

    Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput. Mater. 2, 16028 (2016).

    Article  Google Scholar 

  35. 35.

    Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  Google Scholar 

  36. 36.

    Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  37. 37.

    Aykol, M. et al. High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 7, 13779 (2016).

    Article  Google Scholar 

  38. 38.

    Sendek, A. D. et al. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci. 10, 306–320 (2017).

    Article  Google Scholar 

  39. 39.

    Ulissi, Z. W. et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 7, 6600–6608 (2017).

    Article  Google Scholar 

  40. 40.

    Si, X.-S., Wang, W., Hu, C.-H. & Zhou, D.-H. Remaining useful life estimation—a review on the statistical data driven approaches. Eur. J. Oper. Res. 213, 1–14 (2011).

    MathSciNet  Article  Google Scholar 

  41. 41.

    Wu, L., Fu, X. & Guan, Y. Review of the remaining useful life prognostics of vehicle lithium-ion batteries using data-driven methodologies. Appl. Sci. 6, 166 (2016).

    Article  Google Scholar 

  42. 42.

    Saha, B., Goebel, K. & Christophersen, J. Comparison of prognostic algorithms for estimating remaining useful life of batteries. Trans. Inst. Meas. Control 31, 293–308 (2009).

    Article  Google Scholar 

  43. 43.

    Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M. & Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 239, 680–688 (2013).

    Article  Google Scholar 

  44. 44.

    Hu, C., Jain, G., Tamirisa, P. & Gorka, T. Method for estimating the capacity and predicting remaining useful life of lithium-ion battery. Appl. Energy 126, 182–189 (2014).

    Article  Google Scholar 

  45. 45.

    Miao, Q., Xie, L., Cui, H., Liang, W. & Pecht, M. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron. Reliab. 53, 805–810 (2013).

    Article  Google Scholar 

  46. 46.

    Hu, X., . & Jiang, J. & Cao, D. & Egardt, B. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling. IEEE Trans. Ind. Electron. 63, 2645–2656 (2016).

    Google Scholar 

  47. 47.

    Zhang, Y., . & Xiong, R. & He, H. & Pecht, M. Lithium-ion battery remaining useful life prediction with Box–Cox transformation and Monte Carlo simulation. IEEE Trans. Ind. Electron. 66, 1585–1597 (2019).

    Article  Google Scholar 

  48. 48.

    Zhang, Y., & Xiong, R. & He, H. & Pecht, M. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans. Veh. Technol. 67, 5695–5705 (2018).

    Article  Google Scholar 

  49. 49.

    Saha, B. & Goebel, K. Battery data set. NASA Ames Progn. Data Repos. (2007).

  50. 50.

    Anseán, D. et al. Fast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging. J. Power Sources 321, 201–209 (2016).

    Article  Google Scholar 

  51. 51.

    Anseán, D. et al. Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycles under dynamic driving schedule. J. Power Sources 356, 36–46 (2017).

    Article  Google Scholar 

  52. 52.

    Liu, P. et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J. Electrochem. Soc. 157, A499–A507 (2010).

    Article  Google Scholar 

  53. 53.

    Safari, M. & Delacourt, C. Aging of a commercial graphite/LiFePO4 cell. J. Electrochem. Soc. 158, A1123–A1135 (2011).

    Article  Google Scholar 

  54. 54.

    Sarasketa-Zabala, E. et al. Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps. J. Phys. Chem. C 119, 896–906 (2015).

    Article  Google Scholar 

  55. 55.

    Ahmed, S. et al. Enabling fast charging—a battery technology gap assessment. J. Power Sources 367, 250–262 (2017).

    Article  Google Scholar 

  56. 56.

    Gyenes, B., Stevens, D. A., Chevrier, V. L. & Dahn, J. R. Understanding anomalous behavior in Coulombic efficiency measurements on Li-ion batteries. J. Electrochem. Soc. 162, A278–A283 (2015).

    Article  Google Scholar 

  57. 57.

    Lewerenz, M. et al. Systematic aging of commercial LiFePO4|graphite cylindrical cells including a theory explaining rise of capacity during aging. J. Power Sources 345, 254–263 (2017).

    Article  Google Scholar 

  58. 58.

    Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).

    MathSciNet  Article  Google Scholar 

  59. 59.

    Bloom, I. et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application. J. Power Sources 139, 295–303 (2005).

    Article  Google Scholar 

  60. 60.

    Smith, A. J., Burns, J. C. & Dahn, J. R. High-precision differential capacity analysis of LiMn2O4/graphite cells. Electrochem. Solid-State Lett. 14, A39–A41 (2011).

    Article  Google Scholar 

  61. 61.

    Dubarry, M., Truchot, C. & Liaw, B. Y. Synthesize battery degradation modes via a diagnostic and prognostic model. J. Power Sources 219, 204–216 (2012).

    Article  Google Scholar 

  62. 62.

    Berecibar, M. et al. Online state of health estimation on NMC cells based on predictive analytics. J. Power Sources 320, 239–250 (2016).

    Article  Google Scholar 

  63. 63.

    Berecibar, M., Garmendia, M., Gandiaga, I., Crego, J. & Villarreal, I. State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application. Energy 103, 784–796 (2016).

    Article  Google Scholar 

  64. 64.

    Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G. & Howey, D. A. Degradation diagnostics for lithium ion cells. J. Power Sources 341, 373–386 (2017).

    Article  Google Scholar 

  65. 65.

    Richardson, R. R., Birkl, C. R., Osborne, M. A. & Howey, D. A. Gaussian process regression for in-situ capacity estimation of lithium-ion batteries. IEEE Trans. Ind. Inform. 15, 127–138 (2019).

    Article  Google Scholar 

  66. 66.

    Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996).

    MathSciNet  MATH  Google Scholar 

Download references


This work was supported by Toyota Research Institute through the Accelerated Materials Design and Discovery programme. P.M.A. was supported by the Thomas V. Jones Stanford Graduate Fellowship and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747. N.P. was supported by SAIC Innovation Center through Stanford Energy 3.0 industry affiliates programme. S.J.H. was supported by the Assistant Secretary for Energy Efficiency, Vehicle Technologies Office of the US Department of Energy under the Advanced Battery Materials Research Program. We thank E. Reed, S. Ermon, Y. Li, C. Bauemer, A. Grover, T. Markov, D. Deng, A. Baclig and H. Thaman for discussions.

Author information




P.M.A., N.J., N.P., M.H.C. and W.C.C. conceived of and conducted the experiments. K.A.S., Z.Y. and B.J. performed the modelling. M.A., Z.Y. and P.K.H. performed data management. P.M.A., K.A.S., N.J., B.J., D.F., M.Z.B., S.J.H., W.C.C. and R.D.B. interpreted the results. All authors edited and reviewed the manuscript. W.C.C. and R.D.B. supervised the work.

Corresponding authors

Correspondence to William C. Chueh or Richard D. Braatz.

Ethics declarations

Competing interests

K.A.S., R.D.B., W.C.C., P.M.A., N.J., S.J.H. and N.P. have filed a patent related to this work: US Application No. 62/575,565, dated 16 October 2018.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–29, Supplementary Tables 1–9, Supplementary Notes 1–7, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Severson, K.A., Attia, P.M., Jin, N. et al. Data-driven prediction of battery cycle life before capacity degradation. Nat Energy 4, 383–391 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing