Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries

Abstract

Solid-state electrolytes with high room-temperature ionic conductivity and fast interfacial charge transport are a requirement for practical solid-state batteries. Here, we report that cationic aluminium species initiate ring-opening polymerization of molecular ethers inside an electrochemical cell to produce solid-state polymer electrolytes (SPEs), which retain conformal interfacial contact with all cell components. SPEs exhibit high ionic conductivity at room temperature (>1 mS cm−1), low interfacial resistances, uniform lithium deposition and high Li plating/striping efficiencies (>98% after 300 charge–discharge cycles). Applications of SPEs in Li–S, Li–LiFePO4 and Li–LiNi0.6Mn0.2Co0.2O2 batteries further demonstrate that high Coulombic efficiency (>99%) and long life (>700 cycles) can be achieved with an in situ SPE design. Our study therefore provides a promising direction for creating solid electrolytes that meet both the bulk and interfacial conductivity requirements for practical solid polymer batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation of SPEs.
Fig. 2: Kinetics and electrochemical characteristics of SPEs with different concentrations of Al(OTf)3.
Fig. 3: Electrochemical stability of the poly-DOL electrolyte.
Fig. 4: Characterization of SEI formed on Li cycled in liquid DOL and SPE electrolytes.
Fig. 5: Li electrodeposit morphology in the liquid electrolyte and poly-DOL SPEs.
Fig. 6: Full cell demonstration of electrochemical cells using an Li metal anode and poly-DOL SPEs.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  2. Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014).

    Article  Google Scholar 

  3. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  Google Scholar 

  4. Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    Article  Google Scholar 

  5. Cheng, X. B., Zhang, R., Zhao, C. Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article  Google Scholar 

  6. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  Google Scholar 

  7. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  Google Scholar 

  8. Busche, M. R. et al. Dynamic formation of a solid–liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 8, 426–434 (2016).

    Article  Google Scholar 

  9. Wei, S., Choudhury, S., Tu, Z., Zhang, K. & Archer, L. A. Electrochemical interphases for high-energy storage using reactive metal anodes. Acc. Chem. Res. 51, 80–88 (2018).

    Article  Google Scholar 

  10. Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

    Article  Google Scholar 

  11. Li, G. et al. Self-formed hybrid interphase layer on lithium metal for high-performance lithium–sulfur batteries. ACS Nano 12, 1500–1507 (2018).

    Article  Google Scholar 

  12. Li, N.-W., Yin, Y.-X., Yang, C.-P. & Guo, Y.-G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016).

    Article  Google Scholar 

  13. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  14. Suo, L. M. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  Google Scholar 

  15. Zeng, Z. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 3, 674–681 (2018).

    Article  Google Scholar 

  16. Tu, Z. et al. Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes. Adv. Energy Mater. 7, 1602367 (2017).

    Article  Google Scholar 

  17. Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).

    Article  Google Scholar 

  18. Manthiram, A., Yu, X. W. & Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  Google Scholar 

  19. Gao, Z. et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, e1705702 (2018).

    Article  Google Scholar 

  20. Hood, Z. D., Wang, H., Samuthira Pandian, A., Keum, J. K. & Liang, C. Li2OHCl crystalline electrolyte for stable metallic lithium anodes. J. Am. Chem. Soc. 138, 1768–1771 (2016).

    Article  Google Scholar 

  21. Quartarone, E. & Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011).

    Article  Google Scholar 

  22. Zhu, Z. et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014).

    Article  Google Scholar 

  23. Manuel Stephan, A. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006).

    Article  Google Scholar 

  24. Lu, Q. et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 29, 1604460 (2017).

    Article  Google Scholar 

  25. Bae, J. et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096–2100 (2018).

    Article  Google Scholar 

  26. Dong, T. et al. A multifunctional polymer electrolyte enables high-voltage lithium metal battery ultra-long cycle-life. Energy Environ. Sci. 11, 1197–1203 (2018).

    Article  Google Scholar 

  27. Sun, B. et al. Toward solid-state 3D-microbatteries using functionalized polycarbonate-based polymer electrolytes. ACS Appl. Mater. Interfaces 10, 2407–2413 (2018).

    Article  Google Scholar 

  28. Lin, Y., Wang, X., Liu, J. & Miller, J. D. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 31, 478–485 (2017).

    Article  Google Scholar 

  29. Pan, Q. et al. Correlating electrode–electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries. Adv. Energy Mater. 7, 1701231 (2017).

    Article  Google Scholar 

  30. Mindemark, J., Imholt, L., Montero, J. & Brandell, D. Allyl ethers as combined plasticizing and crosslinkable side groups in polycarbonate-based polymer electrolytes for solid-state Li batteries. J. Polymer Sci. A 54, 2128–2135 (2016).

    Google Scholar 

  31. Nair, J. R. et al. Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO4. Electrochim. Acta 199, 172–179 (2016).

    Article  Google Scholar 

  32. Li, S. et al. A superionic conductive, electrochemically stable dual-salt polymer electrolyte. Joule 2, 1838–1856 (2018).

    Article  Google Scholar 

  33. Ma, Q. et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem. Int. Ed. 55, 2521–2525 (2016).

    Article  Google Scholar 

  34. Porcarelli, L. et al. Single ion conducting polymer electrolytes based on versatile polyurethanes. Electrochim. Acta 241, 526–534 (2017).

    Article  Google Scholar 

  35. Nykaza, J. R. et al. Polymerized ionic liquid diblock copolymer as solid-state electrolyte and separator in lithium-ion battery. Polymer 101, 311–318 (2016).

    Article  Google Scholar 

  36. Pelz, A. et al. Self-assembled block copolymer electrolytes: enabling superior ambient cationic conductivity and electrochemical stability. Chem. Mater. 31, 277–285 (2018).

    Article  Google Scholar 

  37. Raccichini, R., Dibden, J. W., Brew, A., Owen, J. R. & Garcia-Araez, N. Ion speciation and transport properties of LiTFSI in 1,3-dioxolane solutions: a case study for Li–S battery applications. J. Phys. Chem. B 122, 267–274 (2018).

    Article  Google Scholar 

  38. Okada, M., Yamashita, Y. & Ishii, Y. Polymerization of 1,2-dioxolane. Makromolekul. Chem. 80, 196–207 (1964).

    Article  Google Scholar 

  39. Hiemenz, P. C. & Lodge, T. P. Polymer Chemistry 2nd edn 447–448 (CRC Press, 2007).

  40. Erk, K. A., Martin, J. D., Hu, Y. T. & Shull, K. R. Extreme strain localization and sliding friction in physically associating polymer gels. Langmuir 28, 4472–4478 (2012).

    Article  Google Scholar 

  41. He, M. et al. Fluorinated electrolytes for 5-V Li-ion chemistry: probing voltage stability of electrolytes with electrochemical floating test. J. Electrochem. Soc. 162, A1725–A1729 (2015).

    Article  Google Scholar 

  42. Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Sci. 2, 790–801 (2016).

    Article  Google Scholar 

  43. Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).

    Article  Google Scholar 

  44. Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    Article  Google Scholar 

  45. Wang, Y. et al. Electrochemically controlled solid electrolyte interphase layers enable superior Li–S batteries. ACS Appl. Mater. Interfaces 10, 24554–24563 (2018).

    Article  Google Scholar 

  46. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  Google Scholar 

  47. Wang, H., Lin, D., Liu, Y., Li, Y. & Cui, Y. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Sci. Adv. 3, e1701301 (2017).

    Article  Google Scholar 

  48. Tu, Z. Y. et al. Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases. Chem. Mater. 30, 5655–5662 (2018).

    Article  Google Scholar 

  49. Zhang, S. S. Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J. Electrochem. Soc. 159, A920–A923 (2012).

    Article  Google Scholar 

  50. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy Basic Energy Sciences programme through award DE-SC0016082. Electron microscopy and XPS analysis were performed in facilities supported by the Cornell Center for Materials Research with funding from the NSF MRSEC programme (DMR-1719875). Q.Z. thanks B. Abel and H. Johnson from the Coates Research Group for fruitful discussions about DOL polymerization.

Author information

Authors and Affiliations

Authors

Contributions

Q.Z. and L.A.A. conceived and designed the experiments. Q.Z. prepared and characterized the polymer electrolyte, as well as electrochemical performance. X.L. and Q.Z. performed thermal and rheology studies of SPEs. Q.Z., X.L. and L.A.A. wrote the original draft. Q.Z. and L.A.A. further wrote and revised the manuscript. All authors contributed to the data analysis. L.A.A. directed the research.

Corresponding author

Correspondence to Lynden A. Archer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–20, Supplementary Table 1, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Liu, X., Stalin, S. et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy 4, 365–373 (2019). https://doi.org/10.1038/s41560-019-0349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-019-0349-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing