Article | Published:

Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries

Nature Energyvolume 4pages365373 (2019) | Download Citation

Abstract

Solid-state electrolytes with high room-temperature ionic conductivity and fast interfacial charge transport are a requirement for practical solid-state batteries. Here, we report that cationic aluminium species initiate ring-opening polymerization of molecular ethers inside an electrochemical cell to produce solid-state polymer electrolytes (SPEs), which retain conformal interfacial contact with all cell components. SPEs exhibit high ionic conductivity at room temperature (>1 mS cm−1), low interfacial resistances, uniform lithium deposition and high Li plating/striping efficiencies (>98% after 300 charge–discharge cycles). Applications of SPEs in Li–S, Li–LiFePO4 and Li–LiNi0.6Mn0.2Co0.2O2 batteries further demonstrate that high Coulombic efficiency (>99%) and long life (>700 cycles) can be achieved with an in situ SPE design. Our study therefore provides a promising direction for creating solid electrolytes that meet both the bulk and interfacial conductivity requirements for practical solid polymer batteries.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

  2. 2.

    Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014).

  3. 3.

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

  4. 4.

    Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

  5. 5.

    Cheng, X. B., Zhang, R., Zhao, C. Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

  6. 6.

    Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

  7. 7.

    Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

  8. 8.

    Busche, M. R. et al. Dynamic formation of a solid–liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 8, 426–434 (2016).

  9. 9.

    Wei, S., Choudhury, S., Tu, Z., Zhang, K. & Archer, L. A. Electrochemical interphases for high-energy storage using reactive metal anodes. Acc. Chem. Res. 51, 80–88 (2018).

  10. 10.

    Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

  11. 11.

    Li, G. et al. Self-formed hybrid interphase layer on lithium metal for high-performance lithium–sulfur batteries. ACS Nano 12, 1500–1507 (2018).

  12. 12.

    Li, N.-W., Yin, Y.-X., Yang, C.-P. & Guo, Y.-G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016).

  13. 13.

    Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

  14. 14.

    Suo, L. M. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

  15. 15.

    Zeng, Z. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 3, 674–681 (2018).

  16. 16.

    Tu, Z. et al. Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes. Adv. Energy Mater. 7, 1602367 (2017).

  17. 17.

    Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).

  18. 18.

    Manthiram, A., Yu, X. W. & Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

  19. 19.

    Gao, Z. et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, e1705702 (2018).

  20. 20.

    Hood, Z. D., Wang, H., Samuthira Pandian, A., Keum, J. K. & Liang, C. Li2OHCl crystalline electrolyte for stable metallic lithium anodes. J. Am. Chem. Soc. 138, 1768–1771 (2016).

  21. 21.

    Quartarone, E. & Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011).

  22. 22.

    Zhu, Z. et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014).

  23. 23.

    Manuel Stephan, A. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006).

  24. 24.

    Lu, Q. et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 29, 1604460 (2017).

  25. 25.

    Bae, J. et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096–2100 (2018).

  26. 26.

    Dong, T. et al. A multifunctional polymer electrolyte enables high-voltage lithium metal battery ultra-long cycle-life. Energy Environ. Sci. 11, 1197–1203 (2018).

  27. 27.

    Sun, B. et al. Toward solid-state 3D-microbatteries using functionalized polycarbonate-based polymer electrolytes. ACS Appl. Mater. Interfaces 10, 2407–2413 (2018).

  28. 28.

    Lin, Y., Wang, X., Liu, J. & Miller, J. D. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 31, 478–485 (2017).

  29. 29.

    Pan, Q. et al. Correlating electrode–electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries. Adv. Energy Mater. 7, 1701231 (2017).

  30. 30.

    Mindemark, J., Imholt, L., Montero, J. & Brandell, D. Allyl ethers as combined plasticizing and crosslinkable side groups in polycarbonate-based polymer electrolytes for solid-state Li batteries. J. Polymer Sci. A 54, 2128–2135 (2016).

  31. 31.

    Nair, J. R. et al. Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO4. Electrochim. Acta 199, 172–179 (2016).

  32. 32.

    Li, S. et al. A superionic conductive, electrochemically stable dual-salt polymer electrolyte. Joule 2, 1838–1856 (2018).

  33. 33.

    Ma, Q. et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem. Int. Ed. 55, 2521–2525 (2016).

  34. 34.

    Porcarelli, L. et al. Single ion conducting polymer electrolytes based on versatile polyurethanes. Electrochim. Acta 241, 526–534 (2017).

  35. 35.

    Nykaza, J. R. et al. Polymerized ionic liquid diblock copolymer as solid-state electrolyte and separator in lithium-ion battery. Polymer 101, 311–318 (2016).

  36. 36.

    Pelz, A. et al. Self-assembled block copolymer electrolytes: enabling superior ambient cationic conductivity and electrochemical stability. Chem. Mater. 31, 277–285 (2018).

  37. 37.

    Raccichini, R., Dibden, J. W., Brew, A., Owen, J. R. & Garcia-Araez, N. Ion speciation and transport properties of LiTFSI in 1,3-dioxolane solutions: a case study for Li–S battery applications. J. Phys. Chem. B 122, 267–274 (2018).

  38. 38.

    Okada, M., Yamashita, Y. & Ishii, Y. Polymerization of 1,2-dioxolane. Makromolekul. Chem. 80, 196–207 (1964).

  39. 39.

    Hiemenz, P. C. & Lodge, T. P. Polymer Chemistry 2nd edn 447–448 (CRC Press, 2007).

  40. 40.

    Erk, K. A., Martin, J. D., Hu, Y. T. & Shull, K. R. Extreme strain localization and sliding friction in physically associating polymer gels. Langmuir 28, 4472–4478 (2012).

  41. 41.

    He, M. et al. Fluorinated electrolytes for 5-V Li-ion chemistry: probing voltage stability of electrolytes with electrochemical floating test. J. Electrochem. Soc. 162, A1725–A1729 (2015).

  42. 42.

    Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Sci. 2, 790–801 (2016).

  43. 43.

    Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).

  44. 44.

    Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

  45. 45.

    Wang, Y. et al. Electrochemically controlled solid electrolyte interphase layers enable superior Li–S batteries. ACS Appl. Mater. Interfaces 10, 24554–24563 (2018).

  46. 46.

    Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

  47. 47.

    Wang, H., Lin, D., Liu, Y., Li, Y. & Cui, Y. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Sci. Adv. 3, e1701301 (2017).

  48. 48.

    Tu, Z. Y. et al. Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases. Chem. Mater. 30, 5655–5662 (2018).

  49. 49.

    Zhang, S. S. Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J. Electrochem. Soc. 159, A920–A923 (2012).

  50. 50.

    Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

Download references

Acknowledgements

This work was supported by the Department of Energy Basic Energy Sciences programme through award DE-SC0016082. Electron microscopy and XPS analysis were performed in facilities supported by the Cornell Center for Materials Research with funding from the NSF MRSEC programme (DMR-1719875). Q.Z. thanks B. Abel and H. Johnson from the Coates Research Group for fruitful discussions about DOL polymerization.

Author information

Affiliations

  1. Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA

    • Qing Zhao
    • , Xiaotun Liu
    • , Sanjuna Stalin
    • , Kasim Khan
    •  & Lynden A. Archer
  2. Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA

    • Lynden A. Archer

Authors

  1. Search for Qing Zhao in:

  2. Search for Xiaotun Liu in:

  3. Search for Sanjuna Stalin in:

  4. Search for Kasim Khan in:

  5. Search for Lynden A. Archer in:

Contributions

Q.Z. and L.A.A. conceived and designed the experiments. Q.Z. prepared and characterized the polymer electrolyte, as well as electrochemical performance. X.L. and Q.Z. performed thermal and rheology studies of SPEs. Q.Z., X.L. and L.A.A. wrote the original draft. Q.Z. and L.A.A. further wrote and revised the manuscript. All authors contributed to the data analysis. L.A.A. directed the research.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Lynden A. Archer.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–20, Supplementary Table 1, Supplementary References

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41560-019-0349-7