Burgeoning demands for mobility and private vehicle ownership undermine global efforts to reduce energy-related greenhouse gas emissions. Advanced vehicles powered by low-carbon sources of electricity or hydrogen offer an alternative to conventional fossil-fuelled technologies. Yet, despite ambitious pledges and investments by governments and automakers, it is by no means clear that these vehicles will ultimately reach mass-market consumers. Here, we develop state-of-the-art representations of consumer preferences in multiple global energy-economy models, specifically focusing on the non-financial preferences of individuals. We employ these enhanced model formulations to analyse the potential for a low-carbon vehicle revolution up to 2050. Our analysis shows that a diverse set of measures targeting vehicle buyers is necessary to drive widespread adoption of clean technologies. Carbon pricing alone is insufficient to bring low-carbon vehicles to the mass market, though it may have a supporting role in ensuring a decarbonized energy supply.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Creutzig, F. et al. Transport: a roadblock to climate change mitigation? Science 350, 911–912 (2015).

  2. 2.

    Energy Technology Perspectives 2015: Mobilising Innovation to Accelerate Climate Action (International Energy Agency, 2015).

  3. 3.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5 Ch. 6 (IPCC, 2014).

  4. 4.

    Global EV Outlook 2017 (International Energy Agency, 2017).

  5. 5.

    Vaughan, A. Electric and plug-in hybrid cars whiz past 3m mark worldwide. The Guardian (25 December 2017); https://www.theguardian.com/environment/2017/dec/25/electric-and-plug-in-hybrid-cars-3m-worldwide

  6. 6.

    Lutsey, N. Global Climate Change Mitigation Potential from a Transition to Electric Vehicles Working Paper 2015-5 (The International Council on Clean Transportation, 2015).

  7. 7.

    Lutsey, N. The world turns to electric vehicles. The International Council on Clean Transportation http://www.theicct.org/blogs/staff/world-turns-to-EVs (2016).

  8. 8.

    New Group strategy adopted: Volkswagen Group to become a world-leading provider of sustainable mobility. Volkswagen https://go.nature.com/2tJMlC6 (2016).

  9. 9.

    EV30@30 Campaign (Clean Energy Ministerial, 2017).

  10. 10.

    Paris Declaration on Electro-Mobility and Climate Change & Call to Action, Lima-Paris Action Agenda (United Nations Framework Convention on Climate Change, 2015).

  11. 11.

    Allcott, H. & Wozny, N. Gasoline prices, fuel economy, and the energy paradox. Rev. Econ. Stat. 96, 779–795 (2014).

  12. 12.

    Greene, D. L. Uncertainty, loss aversion, and markets for energy efficiency. Energy Econ. 33, 608–616 (2011).

  13. 13.

    Train, K. Discount rates in consumers’ energy-related decisions: a review of the literature. Energy 10, 1243–1253 (1985).

  14. 14.

    Avineri, E. On the use and potential of behavioural economics from the perspective of transport and climate change. J. Transp. Geogr. 24, 512–521 (2012).

  15. 15.

    Baltas, G., & Saridakis, C. An empirical investigation of the impact of behavioural and psychographic consumer characteristics on car preferences: an integrated model of car type choice. Transp. Res. A 54, 92–110 (2013).

  16. 16.

    DellaVigna, S. Psychology and economics: evidence from the field. J. Econ. Lit. 47, 315–372 (2009).

  17. 17.

    Aini, M. S., Chan, S. C. & Syuhaily, O. Predictors of technical adoption and behavioural change to transport energy-saving measures in response to climate change. Energy Policy 61, 1055–1062 (2013).

  18. 18.

    Tran, M., Banister, D., Bishop, J. & McCulloch, M. Realizing the electric-vehicle revolution. Nat. Clim. Change 2, 328–333 (2012).

  19. 19.

    Rivers, N. & Jaccard, M. Useful models for simulating policies to induce technological change. Energy Policy 34, 2038–2047 (2006).

  20. 20.

    Axsen, J., Bailey, J. & Castro, M. A. Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers. Energy Econ. 50, 190–201 (2015).

  21. 21.

    Darzianazizi, A., Ghasemi, A. & Majd, M. Investigation of the consumers’ preferences about effective criteria in brand positioning: conjoint analysis approach. Aust. J. Basic Appl. Sci. 7, 70–78 (2013).

  22. 22.

    Wu, W. Y., Liao, Y. K. & Chatwuthikrai, A. Applying conjoint analysis to evaluate consumer preferences toward subcompact cars. Expert Syst. Appl. 41, 2782–2792 (2014).

  23. 23.

    Turcksin, L., Mairesse, O. & Macharis, C. Private household demand for vehicles on alternative fuels and drive trains: a review. Eur. Transp. Res. Rev. 5, 149–164 (2013).

  24. 24.

    Needell, Z. A., McNerney, J., Chang, M. T. & Trancik, J. E. Potential for widespread electrification of personal vehicle travel in the United States. Nature Energy 1, 16112 (2016).

  25. 25.

    Lin, Z. Optimizing and diversifying electric vehicle driving range for U.S. drivers. Transp. Sci. 48, 635–650 (2014).

  26. 26.

    Wilson, C., Pettifor, H. & McCollum, D. Improving the Behavioural Realism of Integrated Assessment Models of Global Climate Change Mitigation: A Research Agenda. ADVANCE Project Deliverable No. 3.2 (Tyndall Centre for Climate Change Research and International Institute for Applied Systems Analysis, 2014); http://www.fp7-advance.eu

  27. 27.

    Mattauch, L., Ridgway, M. & Creutzig, F. Happy or liberal? Making sense of behavior in transport policy design. Transp. Res. D 45, 64–83 (2015).

  28. 28.

    Dijk, M., Kemp, R. & Valkering, P. Incorporating social context and co-evolution in an innovation diffusion model—with an application to cleaner vehicles. J. Evol. Econ. 23, 295–329 (2013).

  29. 29.

    Dimitropoulos, A., Rietveld, P. & van Ommeren, J. N. Consumer valuation of changes in driving range: a meta-analysis. Transp. Res. A 55, 27–45 (2013).

  30. 30.

    Mercure, J. F. & Lam, A. The effectiveness of policy on consumer choices for private road passenger transport emissions reductions in six major economies. Environ. Res. Lett. 10, 064008 (2015).

  31. 31.

    Pettifor, H., Wilson, C., Axsen, J., Abrahamse, W. & Anable, J. Social influence in the global diffusion of alternative fuel vehicles – a meta-analysis. J. Transp. Geogr. 62, 247–261 (2017).

  32. 32.

    Jaccard, M. & Dennis, M. Estimating home energy decision parameters for a hybrid energy-economy policy model. Environ. Model. Assess. 11, 91–100 (2006).

  33. 33.

    McCollum, D. L. et al. Improving the behavioral realism of global integrated assessment models: an application to consumers’ vehicle choices. Transp. Res. D 55, 322–342 (2017).

  34. 34.

    Bunch, D. S., Ramea, K., Yeh, S. & Yang, C. Incorporating Behavioral Effects from Vehicle Choice Models into Bottom-Up Energy Sector Models. Research Report UCD-ITS-RR-15-13 (Institute of Transportation Studies, University of California, 2015).

  35. 35.

    Cameron, C. et al. Policy trade-offs between climate mitigation and clean cook-stove access in South Asia. Nat. Energy 1, 15010 (2016).

  36. 36.

    Daioglou, V., van Ruijven, B. J. & van Vuuren, D. P. Model projections for household energy use in developing countries. Energy 37, 601–615 (2012).

  37. 37.

    Li, F. & Strachan, N. Modelling energy transitions for climate targets under landscape and actor inertia. Environ. Innov. Soc. Transit. 24, 106–129 (2016).

  38. 38.

    Mercure, J.-F., Pollitt, H., Bassi, A. M., Viñuales, J. E. & Edwards, N. R. Modelling complex systems of heterogeneous agents to better design sustainability transitions policy. Glob. Environ. Change 37, 102–115 (2016).

  39. 39.

    Ramea, K. Integration of Vehicle Consumer Choice in Energy Systems Models and its Implications for Climate Policy Analysis. Doctoral Dissertation, University of California, Davis (2016)

  40. 40.

    Girod, B., van Vuuren, D. P. & de Vries, B. Influence of travel behavior on global CO2 emissions. Transp. Res. A 50, 183–197 (2013).

  41. 41.

    Steg, L., Perlaviciute, G. & van der Werff, E. Understanding the human dimensions of a sustainable energy transition. Front. Psychol. 6, 805 (2015).

  42. 42.

    Bolderdijk, J. W. & Steg, L. in Handbook of Research in Sustainable Consumption (eds Reisch, L. A. & Thøgersen, J.) 328–342 (Edward Elgar Publishing Limited, Cheltenham, 2015).

  43. 43.

    Krey, V. Global energy-climate scenarios and models: a review. Energy Environ. 3, 363–383 (2014).

  44. 44.

    Wilson, C. et al. Evaluating Process-Based Integrated Assessment Models of Climate Change Mitigation. IIASA Working Paper WP-17-007 (IIASA, 2017).

  45. 45.

    Lin, Z., Li, J. & Dong, J. Dynamic Wireless Charging: Potential Impact on Plug-in Electric Vehicle Adoption. SAE Technical Papers 2014-01-1965 (Society of Automotive Engineers, 2014).

  46. 46.

    Greene, D. L. & Ji, S. Policies for Promoting Low-Emission Vehicles and Fuels: Lessons from Recent Analyses (Howard H. Baker Center for Public Policy, University of Tennessee, 2016).

  47. 47.

    Nemet, G. F., Jakob, M., Steckel, J. C. & Edenhofer, O. Addressing policy credibility problems for low-carbon investment. Glob. Environ. Change 42, 47–57 (2017).

  48. 48.

    Global EV Outlook 2015. (International Energy Agency, Paris, 2015).

  49. 49.

    Wesseling, J. H. Explaining variance in national electric vehicle policies. Environ. Innov. Soc. Trans. 21, 28–38 (2016).

  50. 50.

    Transitions to Alternative Vehicles and Fuels (National Research Council, National Academies Press, Washington, DC, 2013).

  51. 51.

    Riahi, K. et al. in Global Energy Assessment - Toward a Sustainable Future 1203–1306 (2012).

  52. 52.

    Plevin, R. J., Delucchi, M. A. & Creutzig, F. Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J. Ind. Ecol. 18, 73–83 (2014).

  53. 53.

    GCAM v4.4 Documentation (Pacific Northwest National Laboratory, 2016); http://jgcri.github.io/gcam-doc/toc.html

  54. 54.

    Longden, T. Travel intensity and climate policy: the influence of different mobility futures on the diffusion of battery integrated vehicles. Energy Policy 72, 219–234 (2014).

  55. 55.

    Bosetti, V. & Longden, T. Light duty vehicle transportation and global climate policy: the importance of electric drive vehicles. Energy Policy 58, 209–219 (2013).

  56. 56.

    Pietzcker, R. C. et al. Long-term transport energy demand and climate policy: alternative visions on transport decarbonization in energy-economy models. Energy 64, 95–108 (2014).

  57. 57.

    Rösler, H., van der Zwaan, B., Keppo, I. & Bruggink, J. Electricity versus hydrogen for passenger cars under stringent climate change control. Sustain. Energy Technol. Assess. 5, 106–118 (2014).

  58. 58.

    Energy Technology Perspectives 2017 (International Energy Agency, 2017).

  59. 59.

    Rai, V. & Henry, A. D. Agent-based modelling of consumer energy choices. Nat. Clim. Change 6, 556–562 (2016).

  60. 60.

    ADVANCE wiki: The Common Integrated Assessment Model (CIAM) Documentation(ADVANCE, 2017); http://themasites.pbl.nl/models/advance/index.php/ADVANCE_wiki

  61. 61.

    Kriegler, E. et al. What does the 2°C target imply for a global climate agreement in 2020? The LIMITS study on Durban Action Platform scenarios. Clim. Change Econ. 04, 1340008 (2013).

  62. 62.

    Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim. Change 123, 353–367 (2014).

  63. 63.

    Riahi, K. et al. Locked into Copenhagen pledges — implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Social. Change 90, 8–23 (2015).

  64. 64.

    Noppers, E. H., Keizer, K., Bockarjova, M. & Steg, L. The adoption of sustainable innovations: the role of instrumental, environmental, and symbolic attributes for earlier and later adopters. J. Environ. Psychol. 44, 74–84 (2015).

  65. 65.

    Noppers, E. H., Keizer, K., Bolderdijk, J. W. & Steg, L. The adoption of sustainable innovations: driven by symbolic and environmental motives. Glob. Environ. Change 25, 52–62 (2014).

  66. 66.

    Axsen, J. & Kurani, K. S. Interpersonal influence within car buyers’ social networks: applying five perspectives to plug-in hybrid vehicle drivers. Environ. Plan. A 44, 1047–1065 (2012).

  67. 67.

    Karkatsoulis, P., Siskos, P., Paroussos, L. & Capros, P. Simulating deep CO2 emission reduction in transport in a general equilibrium framework: the GEM-E3T model. Transp. Res. D 55, 343–358 (2017).

  68. 68.

    Capros, P. et al. GEM-E3 Model Documentation (2013); http://ftp.jrc.es/EURdoc/JRC83177.pdf

  69. 69.

    Waisman, H.-D., Guivarch, C. & Lecocq, F. The transportation sector and low-carbon growth pathways: modelling urban, infrastructure, and spatial determinants of mobility. Clim. Policy 13, 106–129 (2013).

  70. 70.

    Girod, B., van Vuuren, D. P. & Deetman, S. Global travel within the 2 °C climate target. Energy Policy 45, 152–166 (2012).

  71. 71.

    Anandarajah, G., Pye, S., Usher, W., Kesicki, F. & Mcglade, C. TIAM-UCL Global Model Documentation (UK Energy Research Centre, 2011).

  72. 72.

    Emmerling, J. et al. The WITCH2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways. (Fondazione Eni Enrico Mattei (FEEM), 2016).

  73. 73.

    Global EV Outlook 2016 (International Energy Agency, 2016).

  74. 74.

    World Vehicles in Operation (Ward’s Automotive Group, 2011); http://wardsauto.com/news-analysis/world-vehicle-population-tops-1-billion-units

  75. 75.

    Transportation Energy Data Book 34th edn (Oak Ridge National Laboratory, Oak Ridge, 2015).

  76. 76.

    Edwards, R., Larive, J.-F., Rickeard, D. & Weindorf, W. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Summary of energy and GHG balance of individual pathways, Well-to-Tank Appendix 2 - Version 4a. (European Commission, Joint Research Centre, Institute for Energy and Transport, 2014).

  77. 77.

    Malins, C., Galarza, S., Baral, A., Brandt, A. & Howorth, G. The Development of a Greenhouse Gas Emissions Calculation Methodology for Article 7a of the Fuel Quality Directive. Report to the Directorate General for Climate Action of the European Commission (The International Council on Clean Transportation, 2014).

  78. 78.

    Energy Redefined. Carbon Intensity of Crude Oil in Europe Crude (The International Council on Clean Transportation, 2010); https://www.theicct.org/publications/carbon-intensity-crude-oil-europe

  79. 79.

    Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) Ch. 11 (IPCC, Oxford, 2014).

  80. 80.

    Table 6. Carbon Intensity Lookup Table for Gasoline and Fuels that Substitute for Gasoline (California Air Resources Board, 2012).

Download references


We acknowledge funding provided by the ADVANCE project (FP7/2007–2013, grant agreement number 308329) of the European Commission. P. Kolp, D. Huppmann and M. Strubegger of IIASA provided critical assistance with MESSAGE-Transport model development. B. Girod (ETH-Zürich) helped with IMAGE model development. N. Lutsey of The International Council on Clean Transportation (ICCT) referred us to the most up-to-date information on AFV-supporting policies at the time of writing.

Author information


  1. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

    • David L. McCollum
    • , Charlie Wilson
    • , Volker Krey
    •  & Keywan Riahi
  2. Howard H. Baker Jr. Center for Public Policy, University of Tennessee, Knoxville, TN, USA

    • David L. McCollum
  3. Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, United Kingdom

    • Charlie Wilson
    •  & Hazel Pettifor
  4. Climate and Sustainable Innovation (CSI) Program, Fondazione Eni Enrico Mattei (FEEM), and Economic analysis of Climate Impacts and Policy Division (ECIP), Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Milan, Italy

    • Michela Bevione
    • , Samuel Carrara
    •  & Johannes Emmerling
  5. Climate, Air and Energy Department, PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands

    • Oreane Y. Edelenbosch
    •  & Detlef P. van Vuuren
  6. Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands

    • Oreane Y. Edelenbosch
    •  & Detlef P. van Vuuren
  7. Ecole des Ponts, Centre International de Recherche sur l’Environnement et le Développement (CIRED), Nogent-sur-Marne, France

    • Céline Guivarch
  8. E3MLab/Institute of Communications and Computer Systems, National Technical University of Athens, Zografou, Greece

    • Panagiotis Karkatsoulis
    •  & Leonidas Paroussos
  9. UCL Energy Institute, University College London, Central House, London, United Kingdom

    • Ilkka Keppo
    •  & Baltazar Solano Rodriguez
  10. Center for Transportation Analysis, Oak Ridge National Laboratory (ORNL), Knoxville, TN, USA

    • Zhenhong Lin
  11. Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, USA

    • Zhenhong Lin
  12. Centre International de Recherche sur l’Environnement et le Développement (CIRED) & Société de Mathématiques Appliquées et de Sciences Humaines (SMASH), Nogent-sur-Marne, France

    • Eoin Ó Broin
  13. Institute of Transportation Studies, University of California, Davis, Davis, CA, USA

    • Kalai Ramea
  14. Institute of Thermal Engineering, Graz University of Technology, Graz, Austria

    • Keywan Riahi
  15. Payne Institute, Colorado School of Mines, Golden, CO, USA

    • Keywan Riahi
  16. Systems Analysis Group, Research Institute of Innovative Technology for the Earth (RITE), Kyoto, Japan

    • Fuminori Sano


  1. Search for David L. McCollum in:

  2. Search for Charlie Wilson in:

  3. Search for Michela Bevione in:

  4. Search for Samuel Carrara in:

  5. Search for Oreane Y. Edelenbosch in:

  6. Search for Johannes Emmerling in:

  7. Search for Céline Guivarch in:

  8. Search for Panagiotis Karkatsoulis in:

  9. Search for Ilkka Keppo in:

  10. Search for Volker Krey in:

  11. Search for Zhenhong Lin in:

  12. Search for Eoin Ó Broin in:

  13. Search for Leonidas Paroussos in:

  14. Search for Hazel Pettifor in:

  15. Search for Kalai Ramea in:

  16. Search for Keywan Riahi in:

  17. Search for Fuminori Sano in:

  18. Search for Baltazar Solano Rodriguez in:

  19. Search for Detlef P. van Vuuren in:


D.L.M., C.W., V.K. and K. Riahi designed the research. H.P., C.W., Z.L. and K. Ramea contributed data for the modelling. D.L.M., M.B., E.ÓB., S.C., O.Y.E., J.E., C.G., P.K., I.K., V.K., L.P., K. Riahi, B.S.R. and D.P.v.V. implemented the modelling. D.L.M. wrote the manuscript, with all authors contributing.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to David L. McCollum.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–5, Supplementary Figures 1–18, Supplementary Discussion, Supplementary Methods, Supplementary References

  2. Supplementary Data 1

    Model assumptions for annual driving distances and consumer group splits by region

  3. Supplementary Data 2

    Model assumptions for (dis)utility costs by non-financial attribute, consumer group, vehicle technology and region

  4. Supplementary Data 3

    Model assumptions for capital costs of light-duty vehicles over time in each model’s USA region in the ‘AFV Push’ scenario with US$100 per tCO2 carbon pricing

About this article

Publication history