Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrated thinking for photovoltaics in buildings

Recent developments in photovoltaic technologies enable stimulating architectural integration into building façades and rooftops. Upcoming policies and a better coordination of all stakeholders will transform how we approach building-integrated photovoltaics and should lead to strong deployment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Predicted annual worldwide BIPV commercial market revenue.
Fig. 2: Common PV installations on rooftops.

Panther Media GmbH / Alamy Stock Photo (a), Shank_ali / E+ / Getty images (b)

Fig. 3: Examples of façade and roof demonstration projects with BIPV in Neuchâtel, Switzerland.

Thomas Jantscher (a,b), Patrick Heinstein (c,d)

Fig. 4: Best-practice examples of BIPV worldwide.

David Jackson / Alamy Stock Photo (a), TA images / Alamy Stock Photo (b), Patrick Heistein (c,d), Rene Schmid Architeken (e,f)

Fig. 5: Innovative transformative approaches in Switzerland.

CSEM (a), Olivier Wavre, LAST-EPFL (b)


  1. 1.

    Feige, A., Wallbaum, H. & Krank, S. Build. Res. Inf. 39, 504–517 (2011).

    Article  Google Scholar 

  2. 2.

    Defaix, P., van Sark, W., Worrell, E. & de Visser, E. Solar Energy 86, 2644–2653 (2012).

    Article  Google Scholar 

  3. 3.

    Shukla, A. K. et al. Renew. Sust. Energy Rev. 82, 3314–3322 (2018).

    Article  Google Scholar 

  4. 4.

    Changhai, P., Ying, H. & Zhishen, W. Energy Build. 43, 3592–3598 (2011).

    Article  Google Scholar 

  5. 5.

    Santos, I. & Rüther, R. Energy Build. 50, 290–297 (2012)..

  6. 6.

    BIPV Technologies and Markets: 2017-2026 (n-tech Research, 2017);

  7. 7.

    Jelle, B. Sol. Energy Mater. Sol. Cells 100, 69–96 (2012).

    Article  Google Scholar 

  8. 8.

    van der Wiel, B., Egelhaaf, H., Issa, H., Roos, M. & Henze, N. MRS Proceedings 1639, Mrsf13-1639-y10-03 (2014).

    Article  Google Scholar 

  9. 9.

    Rey, E. From Spatial Development to Detail (Quart Publishers, Lucerne, 2015).

    Google Scholar 

  10. 10.

    Attoye, D. E., Tabet Aoul, K. A. & Hassan, A. Sustainability 9, 2287 (2017).

    Article  Google Scholar 

  11. 11.

    Solar Energy System in Architecture - Integration criteria and guidelines (IEA, 2012);

  12. 12.

    Curtius, C. Renew. Energy 126, 783–790 (2018).

    Article  Google Scholar 

  13. 13.

    Hille, S., Curtius, H. & Wuestenhagen, R. Energy Build. 162, 21–31 (2018).

    Article  Google Scholar 

  14. 14.

    Graziano, M. J. Econ. Geog. 15, 815–839 (2015).

    Article  Google Scholar 

  15. 15.

    Bonomo, P., De Berardinis, P. & Frontini, F. In Proc. 28th European Photovoltaic Solar Energy Conference and Exhibition. 4373–4379 (EU PVSEC, 2013).

  16. 16.

    Aguacil, S., Lufkin, S. & Rey, E. In Proc. 33th International Conference on Passive and Low Energy Architecture (Ed. Brotas, L. et al.) 2, 3000–3007 (PLEA, 2017).

  17. 17.

    Photovoltaic Power Systems Programme PVPS Annual Report (IEA, 2016).

  18. 18.

    Clua Longas, A., Lufkin, S. & Rey, E. In Proc. 33th International Conference on Passive and Low Energy Architecture (Ed. Brotas, L. et al.) 1, 192–199 (PLEA, 2017).

  19. 19.

    Jolissaint, N. Energy Procedia 122, 175–180 (2017).

    Article  Google Scholar 

  20. 20.

    Escarré, J. In Proc. Photovoltaic Specialist Conference (IEEE, 2015);

  21. 21.

    European Parliament and the Council of the European Union Directive 2010/31/EU on the Energy Performance of Buildings (Official Journal of the European Union, 2010).

  22. 22.

    European Parliament and the Council of the European Union Directive 2012/27/EU on Energy Efficiency (Official Journal of the European Union, 2012).

  23. 23.

    Quesada, G. Renew. Sust. Energy Rev. 16, 2820–2832 (2012).

    Article  Google Scholar 

  24. 24.

    Heinstein, P., Ballif, C. & Perret-Aebi, L.-E. Green 3, 125–126 (2013).

    Article  Google Scholar 

  25. 25.

    BIPV Product Overview for Solar Facades and Roofs (SUPSI-SEAC, 2015).

  26. 26.

    Pagliaro, M. Prog. Photovolt. Res. App. 18, 61–72 (2010).

    Article  Google Scholar 

Download references


This comment is based in particular on projects supported by the National Research Program NRP 70 ‘Energy Turnaround’ of the Swiss National Science Foundation (SNSF).

Author information



Corresponding author

Correspondence to Christophe Ballif.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ballif, C., Perret-Aebi, LE., Lufkin, S. et al. Integrated thinking for photovoltaics in buildings. Nat Energy 3, 438–442 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing