Article | Published:

Economic viability of thin-film tandem solar modules in the United States

Nature Energyvolume 3pages387394 (2018) | Download Citation


Tandem solar cells are more efficient but more expensive per unit area than established single-junction (SJ) solar cells. To understand when specific tandem architectures should be utilized, we evaluate the cost-effectiveness of different II–VI-based thin-film tandem solar cells and compare them to the SJ subcells. Levelized cost of electricity (LCOE) and energy yield are calculated for four technologies: industrial cadmium telluride and copper indium gallium selenide, and their hypothetical two-terminal (series-connected subcells) and four-terminal (electrically independent subcells) tandems, assuming record SJ quality subcells. Different climatic conditions and scales (residential and utility scale) are considered. We show that, for US residential systems with current balance-of-system costs, the four-terminal tandem has the lowest LCOE because of its superior energy yield, even though it has the highest US$ per watt (US$ W–1) module cost. For utility-scale systems, the lowest LCOE architecture is the cadmium telluride single junction, the lowest US$ W–1 module. The two-terminal tandem requires decreased subcell absorber costs to reach competitiveness over the four-terminal one.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Powell, D. M., Winkler, M. T., Goodrich, A. & Buonassisi, T. Modeling the cost and minimum sustainable price of crystalline silicon photovoltaic manufacturing in the United States. IEEE J. Photovolt. 3, 662–668 (2013).

  2. 2.

    de Vos, A. Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D. 13, 839–846 (1980).

  3. 3.

    Henry, C. H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980).

  4. 4.

    Powell, D. M. et al. Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 5874–5883 (2012).

  5. 5.

    Horowitz, K. A. W., Fu, R. & Woodhouse, M. An analysis of glass–glass CIGS manufacturing costs. Sol. Energy Mater. Sol. Cells 154, 1–10 (2016).

  6. 6.

    Bobela, D. C., Gedvilas, L., Woodhouse, M., Horowitz, K. A. W. & Basore, P. A. Economic competitiveness of III–V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios. Prog. Photovolt. Res. Appl. 15, 41–48 (2016).

  7. 7.

    Nanayakkara, S. U., Horowitz, K., Kanevce, A., Woodhouse, M. & Basore, P. Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules. Prog. Photovolt. Res. Appl 25, 271–279 (2017).

  8. 8.

    Azzopardi, B. et al. Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment. Energy Environ. Sci. 4, 3741 (2011).

  9. 9.

    Louwen, A., Van Sark, W., Schropp, R. & Faaij, A. A cost roadmap for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 147, 295–314 (2016).

  10. 10.

    Peters, I. M., Sofia, S., Mailoa, J. & Buonassisi, T. Techno-economic analysis of tandem photovoltaic systems. RSC Adv. 6, 66911–66923 (2016).

  11. 11.

    Mailoa, J. P. et al. Energy-yield prediction for II–VI-based thin-film tandem solar cells. Energy Environ. Sci. 9, 2644–2653 (2016).

  12. 12.

    Peters, I. M., Liu, H., Reindl, T. & Buonassisi, T. Global prediction of photovoltaic field performance differences using open-source satellite data. Joule 2, 307–322 (2018).

  13. 13.

    Fu, R. et al. US Solar Photovoltaic System Cost Benchmark: Q1 2016 NREL/TP-6A20-66532 (NationalRenewable Energy Laboratory, 2016).

  14. 14.

    Jones-Albertus, R., Feldman, D., Fu, R., Horowitz, K. & Woodhouse, M. Technology advances needed for photovoltaics to achieve widespread grid price parity. Prog. Photovolt. Res. Appl. 24, 1272–1283 (2016).

  15. 15.

    Cai, M. et al. Cost-performance analysis of perovskite solar modules. Adv. Sci. 4, 1600269 (2016).

  16. 16.

    Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon 8, 133–138 (2014).

  17. 17.

    Goodrich, A., James, T. & Woodhouse, M. Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities NREL/TP-6A20-53347 (National Renewable Energy Laboratory, 2012).

  18. 18.

    Jiang, F. et al. Two-terminal perovskite/perovskite tandem solar cell. J. Mater. Chem. A. 4, 1208–1213 (2015).

  19. 19.

    Eperon, G. E. et al. Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

  20. 20.

    Rajagopal, A. et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29, 1–10 (2017).

  21. 21.

    Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

  22. 22.

    Duong, T. et al. Rubidium multication perovskite with optimized bandgap for perovskite–silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017).

  23. 23.

    Yu, Z. J., Leilaeioun, M. & Holman, Z. Selecting tandem partners for silicon solar cells. Nat. Energy 1, 16137 (2016).

  24. 24.

    Paetzold, U. W. et al. Scalable perovskite/CIGS thin-film solar module with power conversion efficiency of 17.8%. J. Mater. Chem. A 5, 9897–9906 (2017).

  25. 25.

    Guchhait, A. et al. Over 20% efficient CIGS–perovskite tandem solar cells. ACS Energy Lett. 2, 807–812 (2017).

  26. 26.

    Mantilla-Perez, P. et al. Monolithic CIGS–perovskite tandem cell for optimal light harvesting without current matching. ACS Photonics 4, 861–867 (2017).

  27. 27.

    Faine, P., Kurtz, S. R., Riordan, C. & Olson, J. M. The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells. Sol. Cells 31, 259–278 (1991).

  28. 28.

    Liu, H. et al. The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study. Opt. Express 23, A382–A390 (2015).

  29. 29.

    Garland, J. W., Biegala, T., Carmody, M., Gilmore, C. & Sivananthan, S. Next-generation multijunction solar cells: the promise of II–VI materials. J. Appl. Phys. 109, 102423 (2011).

  30. 30.

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 46). Prog. Photovolt. Res. Appl. 23, 805–812 (2015).

  31. 31.

    Nakamura, M. et al. In 2014 IEEE 40th Photovolt. Spec. Conf. 107–110 (IEEE, 2014).

  32. 32.

    Gueymard, C. A. SMARTS, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment Professional Paper FSEC-PF-270-95 (Florida Solar Energy Center, 1995).

  33. 33.

    Gueymard, C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 71, 325–346 (2001).

  34. 34.

    Roberts, B. J. Photovoltaic Solar Resource of the United States (National Renewable Energy Laboratory, 2012);

  35. 35.

    Modules: Our Technology (First Solar, accessed 26 February 2017);

  36. 36.

    First Solar 2015 Annual Report (First Solar, 2015);

  37. 37.

    Gee, J. M. A comparison of different module configurations for multi-band-gap solar cells. Sol. Cells 24, 147–155 (1988).

  38. 38.

    Fthenakis, V. et al. Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems IEA-PVPS T12-02:2011 (International Energy Agency, Paris, 2011).

  39. 39.

    Sputtering Yield Rates (Semicore Equipment, Inc.);

  40. 40.

    Indium Tin Oxide (ITO) for Deposition of Transparent Conductive Oxide Layers (Umicore, accessed 1 August 2016);

  41. 41.

    Richard, D. On the cutting edge: thin-film laser structuring survey. Phot. Int. 9, 172–195 (2010).

  42. 42.

    Electric Power Monthly, Industrial, 2016 (US Energy Information Administration);

  43. 43.

    Siah, S.-C. Defect Engineering in Cuprous Oxide (Cu 2 O) Solar Cells (Massachusetts Institute of Technology, 2015).

  44. 44.

    System Advisory Model (SAM): Financial Model Documentation (National Renewable Energy Laboratory, 2010);

  45. 45.

    Jordan, D. C. & Kurtz, S. R. Photovoltaic degradation rates—an analytical review. Prog. Photovolt. Res. Appl. 21, 12–29 (2013).

Download references


This works was funded in part by the National Research Foundation Singapore through the Singapore-MIT Alliance for Research and Technology, the Bay Area Photovoltaic Consortium (BAPVC) under Contract no. DE-EE0004946, the US Department of Energy under Award no. DE-EE0006707 and the National Science Foundation (NSF) and Department of Energy (DOE) under NSF CA No. EEC-1041895. Numerous peer conversations at BAPVC are noted. This work additionally benefitted greatly from the prior work of D. M. Powell and S. C. Siah.

The CdTe cost model was made independently, without contribution from or corroboration by First Solar. The CIGS cost model was made independently, without contribution from or corroboration by Siva Power.

Author information


  1. Massachusetts Institute of Technology, Cambridge, MA, USA

    • Sarah E. Sofia
    • , Jonathan P. Mailoa
    • , Tonio Buonassisi
    •  & I. Marius Peters
  2. First Solar Inc., Santa Clara, CA, USA

    • Dirk N. Weiss
  3. Siva Power, Santa Clara, CA, USA

    • Billy J. Stanbery


  1. Search for Sarah E. Sofia in:

  2. Search for Jonathan P. Mailoa in:

  3. Search for Dirk N. Weiss in:

  4. Search for Billy J. Stanbery in:

  5. Search for Tonio Buonassisi in:

  6. Search for I. Marius Peters in:


S.E.S. compiled cost data and developed the cost model and analysis tools, with cost inputs and feedback contributed by D.N.W., B.J.S., I.M.P. and T.B. J.P.M. and S.E.S. performed energy-yield calculations. S.E.S. performed analysis and data visualization. I.M.P., T.B. and D.N.W. conceptualized the initial project. The manuscript was written by S.E.S. and edited by all the co-authors. I.M.P. provided lead mentorship. All the authors reviewed and approved the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Sarah E. Sofia or Tonio Buonassisi or I. Marius Peters.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–9, Supplementary Methods, Supplementary Figure 1 and Supplementary References.

About this article

Publication history





Further reading Further reading