Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fast ion transport at solid–solid interfaces in hybrid battery anodes

Abstract

Carefully designed solid-electrolyte interphases are required for stable, reversible and efficient electrochemical energy storage in batteries. We report that hybrid battery anodes created by depositing an electrochemically active metal (for example, Sn, In or Si) on a reactive alkali metal electrode by a facile ion-exchange chemistry lead to very high exchange currents and stable long-term performance of electrochemical cells based on Li and Na electrodes. By means of direct visualization and ex situ electrodeposition studies, Sn–Li anodes are shown to be stable at 3 mA cm−2 and 3 mAh cm−2. Prototype full cells in which the hybrid anodes are paired with high-loading LiNi0.8Co0.15Al0.05O2(NCA) cathodes are also reported. As a second demonstration, we create and study Sn–Na hybrid anodes and show that they can be cycled stably for more than 1,700 hours with minimal voltage divergence. Charge storage at the hybrid anodes is reported to involve a combination of alloying and electrodeposition reactions.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Hybrid anodes based on facile and fast Sn deposition on reactive metals produced by ion exchange.
Fig. 2: Physical and electrochemical analysis of Sn–Li hybrid electrodes.
Fig. 3: Direct and indirect demonstrations of stability of Sn–Li hybrid anodes.
Fig. 4: Hybrid Sn–Na anodes offer a route to stable deposition at reactive sodium electrodes.

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  2. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2009).

    Article  Google Scholar 

  3. Bruce, P. G. Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ion. 179, 752–760 (2008).

    Article  Google Scholar 

  4. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article  Google Scholar 

  5. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article  Google Scholar 

  6. Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    Article  Google Scholar 

  7. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotech. 12, 194–206 (2017).

    Article  Google Scholar 

  8. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  9. Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 16128 (2016).

    Article  Google Scholar 

  10. Ma, L., Hendrickson, K. E., Wei, S. & Archer, L. A. Nanomaterials: science and applications in the lithium–sulfur battery. Nano Today 10, 315–338 (2015).

    Article  Google Scholar 

  11. Li, Y. & Dai, H. Recent advances in zinc–air batteries. Chem. Soc. Rev. 43, 5257–5275 (2014).

    Article  Google Scholar 

  12. Wei, S. et al. A stable room-temperature sodium-sulfur battery. Nat. Commun. 7, 11722 (2016).

  13. Al Sadat, W. I. & Archer, L. A. The O2-assisted Al/CO 2 electrochemical cell: A system for CO2 capture/conversion and electric power generation. Sci. Adv. 2, e1600968 (2016).

    Article  Google Scholar 

  14. Tu, Z., Nath, P., Lu, Y., Tikekar, M. D. & Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947–2956 (2015).

    Article  Google Scholar 

  15. Cheng, X. B. et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016).

    Article  Google Scholar 

  16. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  Google Scholar 

  17. Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    Article  Google Scholar 

  18. Ji, L., Lin, Z., Alcoutlabi, M. & Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011).

    Article  Google Scholar 

  19. Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).

    Article  Google Scholar 

  20. Tung, S.-O., Ho, S., Yang, M., Zhang, R. & Kotov, N. A. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152 (2015).

  21. Fergus, J. W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010).

    Article  Google Scholar 

  22. Lu, Y., Korf, K., Kambe, Y., Tu, Z. & Archer, L. A. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Int. Ed. 53, 488–492 (2014).

    Article  Google Scholar 

  23. Villaluenga, I. et al. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries. Proc. Natl Acad. Sci. USA 113, 52–57 (2016).

    Article  Google Scholar 

  24. Tu, Z., Lu, Y. & Archer, L. A Dendrite‐free lithium metal battery model based on nanoporous polymer/ceramic composite electrolytes and high‐energy electrodes. Small 11, 2631–2635 (2015).

    Article  Google Scholar 

  25. Tu, Z. et al. Nanoporous hybrid electrolytes for high‐energy batteries based on reactive metal anodes. Adv. Energy Mater. ​7 7, 1602367 (2017).

    Article  Google Scholar 

  26. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    Article  Google Scholar 

  27. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    Article  Google Scholar 

  28. Ma, Q. et al. Single lithium‐ion conducting polymer electrolytes based on a super‐delocalized polyanion. Angew. Chem. Int. Ed. 55, 2521–2525 (2016).

    Article  Google Scholar 

  29. Lu, Y. et al. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5, 1402073 (2015).

    Article  Google Scholar 

  30. Wei, S. et al. Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv. Mater. 29, 1605512 (2017).

    Article  Google Scholar 

  31. Lee, Y. M. et al. Effects of triacetoxyvinylsilane as SEI layer additive on electrochemical performance of lithium metal secondary battery. Electrochem. Solid-State Lett. 10, A216–A219 (2007).

    Article  Google Scholar 

  32. Zhang, X. Q., Cheng, X. B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Article  Google Scholar 

  33. Zheng, G. et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016).

    Article  Google Scholar 

  34. Ma, L., Kim, M. S. & Archer, L. A. Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater. 29, 4181–4189 (2017).

    Article  Google Scholar 

  35. Liu, Y. et al. An artificial solid electrolyte interphase with high Li‐ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29, 1605531 (2017).

    Article  Google Scholar 

  36. Li, J., Dudney, N. J., Nanda, J. & Liang, C. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 6, 10083–10088 (2014).

    Article  Google Scholar 

  37. Choudhury, S., Agrawal, A., Wei, S., Jeng, E. & Archer, L. A. Hybrid hairy nanoparticle electrolytes stabilizing lithium metal batteries. Chem. Mater. 28, 2147–2157 (2016).

    Article  Google Scholar 

  38. Kim, M. S., Ma, L., Choudhury, S. & Archer, L. A. Multifunctional separator coatings for high‐performance lithium. Adv. Mater. Interfaces 3, 1600450 (2016).

    Article  Google Scholar 

  39. Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    Article  Google Scholar 

  40. Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016).

    Article  Google Scholar 

  41. Liang, Z. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl Acad. Sci. USA 113, 2862–2867 (2016).

    Article  Google Scholar 

  42. Tu, Z., Choudhury, S., Wei, S. & Archer, L. Surface Protected Active Metal Electrodes for Rechargeable Batteries. PCT/US2017/067358 (2017).

  43. Lou, X. W., Wang, Y., Yuan, C., Lee, J. Y. & Archer, L. A. Template‐free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325–2329 (2006).

    Article  Google Scholar 

  44. Winter, M. & Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45, 31–50 (1999).

    Article  Google Scholar 

  45. Choi, Y.-S., Byeon, Y.-W., Ahn, J.-P. & Lee, J.-C. Formation of Zintl ions and their configurational change during sodiation in Na–Sn battery. Nano Lett. 17, 679–686 (2017).

    Article  Google Scholar 

  46. Nesper, R. Structure and chemical bonding in Zintl-phases containing lithium. Prog. Solid State Chem. 20, 1–45 (1990).

    Article  Google Scholar 

  47. Li, J.-T. et al. XPS and ToF-SIMS study of Sn–Co alloy thin films as anode for lithium ion battery. J. Power Sources 195, 8251–8257 (2010).

    Article  Google Scholar 

  48. Munichandraiah, N., Scanlon, L. & Marsh, R. Surface films of lithium: an overview of electrochemical studies. J. Power Sources 72, 203–210 (1998).

    Article  Google Scholar 

  49. Zhang, W. M. et al. Tin‐nanoparticles encapsulated in elastic hollow carbon spheres for high‐performance anode material in lithium‐Ion batteries. Adv. Mater. 20, 1160–1165 (2008).

    Article  Google Scholar 

  50. Wang, L. et al. A superior low‐cost cathode for a Na‐ion battery. Angew. Chem. Int. Ed. 52, 1964–1967 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy (DOE), Advanced Research Projects Agency - Energy (ARPA-E) through award no. DE-AR0000750. M.J.Z. and L.F.K. acknowledge support by the NSF (DMR-1654596). The work made use of electrochemical characterization facilities in the KAUST-CU Centre for Energy and Sustainability, supported by the King Abdullah University of Science and Technology (KAUST) through award no. KUS-C1-018-02. Electron microscopy facilities at the Cornell Centre for Materials Research (CCMR), an NSF-supported MRSEC through Grant DMR-1120296, were also used for the study. Additional support for the FIB/SEM cryo-stage and transfer system was provided by the Kavli Institute at Cornell and the Energy Materials Centre at Cornell, DOE EFRC BES (DE-SC0001086). Z.T. thanks B. Polzin for kindly providing NCA cathode materials from the Cell Analysis, Modeling, and Prototyping (CAMP) Facility at Argonne National Laboratories.

Author information

Authors and Affiliations

Authors

Contributions

Z.T. and L.A.A. conceptualized the project. Z.T., S.C., M.J.Z., L.F.K. and L.A.A. developed the methodology. Z.T., S.C., M.J.Z. and S.W. conducted all experiments reported in the paper. Z.T. and L.A.A. wrote the original draft. Z.T., S.C., M.J.Z., L.F.K. and L.A.A. further wrote and revised the manuscript. L.F.K. and L.A.A. acquired funding for the work and supervised the research reported in the paper.

Corresponding author

Correspondence to Lynden A. Archer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–22.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tu, Z., Choudhury, S., Zachman, M.J. et al. Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat Energy 3, 310–316 (2018). https://doi.org/10.1038/s41560-018-0096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0096-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing