Open discussion of negative emissions is urgently needed

Although nearly all 2 °C scenarios use negative CO2 emission technologies, only relatively small investments are being made in them, and concerns are being raised regarding their large-scale use. If no explicit policy decisions are taken soon, however, their use will simply be forced on us to meet the Paris climate targets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Greenhouse gas emissions and energy system implications under baseline and 2 °C scenarios with and without net negative CO2 emissions.

References

  1. 1.

    Tavoni, M. et al. Nat. Clim. Change 5, 119–126 (2015).

    Article  Google Scholar 

  2. 2.

    Rogelj, J. et al. Nat. Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  3. 3.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds. Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

  4. 4.

    Bertram, C. et al. Technol. Forecast. Soc. Change 90, 62–72 (2015).

    Article  Google Scholar 

  5. 5.

    Kriegler, E. et al. Technol. Forecast. Soc. Change 90, 24–44 (2015).

    Article  Google Scholar 

  6. 6.

    Kriegler, E. et al. Climatic Change 123, 353–367 (2014).

    Article  Google Scholar 

  7. 7.

    Riahi, K. et al. Technol. Forecast. Soc. Change 90, 8–23 (2015).

    Article  Google Scholar 

  8. 8.

    IPCC Climate Change 2014: Synthesis Report (eds Core WritingTeam, Pachauri, R. K. & Meyer L. A.) (IPCC, 2015).

  9. 9.

    Leaders Declaration G7 Summit 7–8 June 2015 (G7 Germany, 2015).

  10. 10.

    Anderson, K. & Peters, G. Science 354, 182–183 (2016).

    Article  Google Scholar 

  11. 11.

    Kriegler, E., Edenhofer, O., Reuster, L., Luderer, G. & Klein, D. Climatic Change 118, 45–57 (2013).

    Article  Google Scholar 

  12. 12.

    van Vuuren, D. P. et al. Climatic Change 118, 15–27 (2013).

    Article  Google Scholar 

  13. 13.

    Azar, C. et al. Climatic Change 100, 195–202 (2010).

    Article  Google Scholar 

  14. 14.

    Gernaat, D. E. H. J. et al. Glob. Environ. Change 33, 142–153 (2015).

    Article  Google Scholar 

  15. 15.

    van Soest, H. L. et al. Climatic Change 142, 491–504 (2017).

    Article  Google Scholar 

  16. 16.

    Anderson, K. Nat. Geosci. 8, 898–900 (2015).

    Article  Google Scholar 

  17. 17.

    Geden, O. Nature 521, 27–28 (2015).

    Article  Google Scholar 

  18. 18.

    Sanchez, D. L. & Kammen, D. M. Nat. Energy 1, 15002 (2016).

    Article  Google Scholar 

  19. 19.

    Eom, J. et al. Technol. Forecast. Soc. Change 90, 73–88 (2015).

    Article  Google Scholar 

  20. 20.

    Clack, C. T. M. et al. Proc. Natl Acad. Sci. USA 114, 6722–6727 (2017).

    Article  Google Scholar 

  21. 21.

    Fuss, S. et al. Environ. Res. Lett. 11, 115007 (2016).

    Article  Google Scholar 

  22. 22.

    Vaughan, N. E. & Gough, C. Environ. Res. Lett. 11, 095003 (2016).

    Article  Google Scholar 

  23. 23.

    Smith, P. et al. Nat. Clim. Change 6, 42–50 (2016).

    Article  Google Scholar 

  24. 24.

    Williamson, P. Nature 530, 7589 (2016).

    Article  Google Scholar 

  25. 25.

    Creutzig, F. et al. GCB Bioenergy 7, 916–944 (2015).

    Article  Google Scholar 

  26. 26.

    Peters, G. P. et al. Nat. Clim. Change 7, 118–122 (2017).

    Article  Google Scholar 

  27. 27.

    Pires, J. C. M., Martins, F. G., Alvim-Ferraz, M. C. M. & Simões, M. Chem. Eng. Res. Design 89, 1446–1460 (2011).

    Article  Google Scholar 

  28. 28.

    Boot-Handford, M. E. et al. Energy Environ. Sci. 7, 130–189 (2014).

    Article  Google Scholar 

  29. 29.

    Koornneef, J. et al. Int. J. Greenhouse Gas Contr. 11, 117–132 (2012).

    Article  Google Scholar 

  30. 30.

    Minx, J. C., Lamb, W. F., Callaghan, M. W., Bornmann, L. & Fuss, S. Environ. Res. Lett. 12, 035007 (2017).

    Article  Google Scholar 

  31. 31.

    Brunsting, S., De Best-Waldhober, M., Feenstra, C. F. J. & Mikunda, T. Energy Proc. 4, 6376–6383 (2011).

    Article  Google Scholar 

  32. 32.

    Fridahl, M. Energy Policy 104, 89–99 (2017).

    Article  Google Scholar 

  33. 33.

    Lockwood, T. Public Outreach Approaches for Carbon Capture and Storage Projects (International Energy Agency, Clean Coal Centre, Paris, 2017).

    Google Scholar 

  34. 34.

    CSL Forum Project Summaries (2017); http://go.nature.com/2AEk9U1

  35. 35.

    Global CCS Institute The Global Status of CCS (2016); http://go.nature.com/2AEkqX3

  36. 36.

    Klein, D. et al. Climatic Change 123, 705–718 (2014).

    Article  Google Scholar 

  37. 37.

    van Vuuren, D. P. & Riahi, K. Climatic Change 104, 793–801 (2011).

    Article  Google Scholar 

  38. 38.

    Peters, G. P. & Geden, O. Nat. Clim. Change 7, 619–621 (2017).

    Article  Google Scholar 

  39. 39.

    Moniz, E. J. & Falih, K. A. A. Open Letter to the United Nations Framework Convention on Climate Change on CCS (2016).

  40. 40.

    CSL Forum Moving Beyond the First Wave of CCS Demonstrations (2015); http://go.nature.com/2AFfEbx

  41. 41.

    Krey, V. et al. in Climate Change 2014: Mitigation of Climate Change (eds. Edenhofer, O. et al.) Annex II (IPCC, Cambridge Univ. Press, 2014).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Detlef P. van Vuuren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Vuuren, D.P., Hof, A.F., van Sluisveld, M.A. et al. Open discussion of negative emissions is urgently needed. Nat Energy 2, 902–904 (2017). https://doi.org/10.1038/s41560-017-0055-2

Download citation

Further reading