Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metagenomic analysis of individual mosquito viromes reveals the geographical patterns and drivers of viral diversity

Abstract

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Here, using a meta-transcriptomic approach, we determined the viromes of 2,438 individual mosquitoes (81 species), spanning ~4,000 km along latitudes and longitudes in China. From these data we identified 393 viral species associated with mosquitoes, including 7 (putative) species of arthropod-borne viruses (that is, arboviruses). We identified potential mosquito species and geographic hotspots of viral diversity and arbovirus occurrence, and demonstrated that the composition of individual mosquito viromes was strongly associated with host phylogeny. Our data revealed a large number of viruses shared among mosquito species or genera, enhancing our understanding of the host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, perhaps reflecting long-distance mosquito dispersal. Together, these results greatly expand the known mosquito virome, linked viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the biogeography and diversity of viruses in insect vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the 2,438 mosquito individuals sampled across China.
Fig. 2: Characterization of individual mosquito viromes and the discovery of putative vertebrate-infecting arboviruses.
Fig. 3: Environmental and host drivers of viral diversity.
Fig. 4: The composition of individual mosquito viromes and the drivers of viral sharing among individual mosquitoes.
Fig. 5: Host specificity of mosquito-associated viruses.
Fig. 6: Linking virus biogeography and mosquito phylogeography.

Similar content being viewed by others

Data availability

The meta-transcriptomic sequencing reads (non-host, non-rRNA reads) generated in this study have been deposited in the CNSA (CNGB Sequence Archive) of CNGBdb (China National GeneBank database, https://db.cngb.org/cnsa/; project accession: CNP0004669). The assembled viral genome sequences have been deposited in the CNGBdb with the accession codes N_AAACQU010000000-N_AAADML010000000 (Supplementary Data 2). The sample metadata and other materials required to reproduce our computational and statistical results are provided in the GitHub repository along with code and scripts (https://github.com/Augustpan/MosquitoVirome).

Code availability

Code and scripts are provided in a GitHub repository (https://github.com/Augustpan/MosquitoVirome).

References

  1. Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380, 1946–1955 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bolling, B. G., Weaver, S. C., Tesh, R. B. & Vasilakis, N. Insect-specific virus discovery: significance for the arbovirus community. Viruses 7, 4911–4928 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vasilakis, N. & Tesh, R. B. Insect-specific viruses and their potential impact on arbovirus transmission. Curr. Opin. Virol. 15, 69–74 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Olmo, R. P. et al. Mosquito vector competence for dengue is modulated by insect-specific viruses. Nat. Microbiol. 8, 135–149 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y. Z., Shi, M. & Holmes, E. C. Using metagenomics to characterize an expanding virosphere. Cell 172, 1168–1172 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, J. et al. Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential. Nat. Commun. 14, 4079 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ni, X.-B. et al. Metavirome of 31 tick species provides a compendium of 1,801 RNA virus genomes. Nat. Microbiol. 8, 162–173 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Shi, M. et al. High-resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in Western Australia. J. Virol. 91, e00680–17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu, Q. et al. Association of virome dynamics with mosquito species and environmental factors. Microbiome 11, 101 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Batson, J. et al. Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. eLife 10, e68353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi, C. et al. Stable distinct core eukaryotic viromes in different mosquito species from Guadeloupe, using single mosquito viral metagenomics. Microbiome 7, 121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Webster, J. P., Borlase, A. & Rudge, J. W. Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the ‘elimination’ era. Philos. Trans. R. Soc. B 372, 20160091 (2017).

    Article  Google Scholar 

  14. Bigot, D. et al. Discovery of Culex pipiens associated tunisia virus: a new ssRNA(+) virus representing a new insect associated virus family. Virus Evol. 4, vex040 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chandler, J. A., Liu, R. M. & Bennett, S. N. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front. Microbiol. 6, 185 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seabloom, E. W. et al. The community ecology of pathogens: coinfection, coexistence and community composition. Ecol. Lett. 18, 401–415 (2015).

    Article  PubMed  Google Scholar 

  17. Mihaljevic, J. R. Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol. Evol. 27, 323–329 (2012).

    Article  PubMed  Google Scholar 

  18. Miller, E. T., Svanback, R. & Bohannan, B. J. M. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).

    Article  PubMed  Google Scholar 

  19. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dzul-Manzanilla, F. et al. Identifying urban hotspots of dengue, chikungunya, and Zika transmission in Mexico to support risk stratification efforts: a spatial analysis. Lancet Planet. Health 5, e277–e285 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Murray, K. A. et al. Global biogeography of human infectious diseases. Proc. Natl Acad. Sci. USA 112, 12746–12751 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Engler, O. et al. European surveillance for West Nile Virus in mosquito populations. Int. J. Environ. Res. Public Health 10, 4869–4895 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kilpatrick, A. M. & Pape, W. J. Predicting human West Nile virus infections with mosquito surveillance data. Am. J. Epidemiol. 178, 829–835 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kuwata, R. et al. Surveillance of Japanese encephalitis virus infection in mosquitoes in Vietnam from 2006 to 2008. Am. Soc. Trop. Med. Hyg. 88, 681–688 (2013).

    Article  Google Scholar 

  25. Weaver, S. C. & Barrett, A. D. T. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat. Rev. Microbiol. 2, 789–801 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol. Biol. Rev. 81, e00002–e00017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Power, A. & Flecker, A. The Role Of Vector Diversity In Disease Dynamics (Princeton Univ. Press, 2008).

  28. Streicker, D. G. et al. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329, 676–679 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Gao, J. et al. Dispersal patterns and population genetic structure of Aedes albopictus (Diptera: Culicidae) in three different climatic regions of China. Parasites Vectors 14, 1–13 (2021).

    Article  Google Scholar 

  30. Huestis, D. L. et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 574, 404–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Tatem, A. J., Rogers, D. J. & Hay, S. I. In Advances in Parasitology Vol. 62 (eds Hay, S. I., Graham, A. & Rogers, D. J.) 293–343 (Academic Press, 2006).

  32. Ratnasingham, S. & Hebert, P. D. BOLD: The Barcode of Life Data System. Mol. Ecol. Notes 7, 355–364 (2007).

  33. Edgar, R. URMAP, an ultra-fast read mapper. PeerJ 8, e9338 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, gix120 (2018).

    Article  PubMed  Google Scholar 

  38. Cantu, V. A., Sadural, J. & Edwards, R. PRINSEQ++, a multi-threaded tool for fast and efficient quality control and preprocessing of sequencing datasets. PeerJ Prepr. 7, e27553v27551 (2019).

    Google Scholar 

  39. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Shi, M. et al. Total infectome characterization of respiratory infections in pre-COVID-19 Wuhan, China. PLoS Pathog. 18, e1010259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Posada, D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  46. Lembrechts, J. J., Nijs, I. & Lenoir, J. Incorporating microclimate into species distribution models. Ecography 42, 1267–1279 (2019).

    Article  ADS  Google Scholar 

  47. Bioclimatic variables. WorldClim https://www.worldclim.org/data/bioclim.html (2017).

  48. Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    Article  ADS  Google Scholar 

  49. R: A Language and Environment for Statistical Computing (R Project, 2022).

  50. Barton, K. MuMIn: multi-model inference. R-Forge http://r-forge.r-project.org/projects/mumin/ (2009).

  51. Oksanen, J. et al. vegan: Community Ecology Package http://CRAN.R-project.org/package=vegan (2012).

  52. Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Systems, 1695 (2006).

  53. GaryBikini/ChinaAdminDivisonSHP: ChinaAdminDivisonSHP v1.1. Zenodo https://doi.org/10.5281/zenodo.4167299 (2020).

Download references

Acknowledgements

This study was funded by grants from the National Key R&D Program of China (2021YFC2300900), National Natural Science Foundation of China (32270160), Shenzhen Science and Technology Program (JCYJ20210324124414040) and open project of BGI-Shenzhen Shenzhen 518000, China (BGIRSZ20210001). M.S. was supported by Shenzhen Science and Technology Program (KQTD20200820145822023), Guangdong Province ‘Pearl River Talent Plan’ Innovation, Entrepreneurship Team Project (2019ZT08Y464) and the Fund of Shenzhen Key Laboratory (ZDSYS20220606100803007). E.C.H. was supported by an NHMRC (Australia) Investigator Award (GNT2017197). We gratefully acknowledge colleagues at BGI-Shenzhen and China National Genebank (CNGB) for RNA extraction, library construction and sequencing.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: D. Wa., Junh. L., W.-C.W. and M.S.; methodology: Y.-F.P., H.Z., Q.-Y.G., D. Wa., Junh. L., W.-C.W. and M.S.; sample collection and processing: Q.-Y.G., G.-Y.L., G.-Y.X., S.-J.L., Ji. W., X. Ho., C.-H.Y., J.-X.C., Y.-Q.L., M.-W.P., S.-Q.M., J.-B.K., X.-X.C., X. Hu., Ju. W., C., Y.-H.W., J.-B.W., T.A. and W.-C.W.; data analysis: Y.-F.P., H.Z., Q.-Y.G., P.-B.S., D. Wa., Junh. L., W.-C.W. and M.S.; writing—original draft: Y.-F.P.; writing—review and editing: H.Z., Q.-Y.G., P.-B.S., J.-H.T., Y.F., K.L., W.-H.Y., D. Wu., G.T., B.Z., Z.R., S.P., G.-Y.L., S.-J.L., G.-Y.X., Ji. W., X. Ho., M.-W.P., J.-B.K., X.-X.C., C.-H.Y., S.-Q.M., Y.-Q.L., J.-X.C., Ju. W., C., Y.-H.W., J.-B.W., T.A., X. Hu., J.-S.E., Jun. L., D.G., G.L., X.J., E.C.H., B.L., D. Wa., Junh. L., W.-C.W. and M.S; funding acquisition: D. Wa., Junh. L., W.-C.W. and M.S.; resources (sampling): J.-H.T., Y.F., K.L., W.-H.Y., D. Wu., G.T., B.Z. and W.-C.W.; resources (computational): D. Wa., Junh. L. and M.S.; supervision: B.L., D. Wa., Junh. L., W.-C.W. and M.S.

Corresponding authors

Correspondence to Bo Li, Daxi Wang, Junhua Li, Wei-Chen Wu or Mang Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Sarah François and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phylogenetic diversity of the 564 viruses determined in this study and the identification of mosquito-associated viruses.

The phylogenetic trees were estimated using hallmark proteins of respective viral taxa. Trees of RNA viruses were estimated at the ‘super clade’ level, while those of DNA virus were constructed at family level. The hallmark proteins utilized were the RNA-directed RNA replicase (RdRp) for all RNA viruses, Rep protein for the Circoviridae, NS1 protein for the Parvoviridae, and DNA polymerase for other DNA viruses. The number of mosquito-associated species and the total viral species is shown below the superclade names (number of mosquito-associated species / number of total species). Viral families were indicated with vertical lines and abbreviated family names (the suffixes ‘-viridae’ were omitted) on the right side of each tree.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Tables 1–14.

Reporting Summary

Peer Review File

Supplementary Data 1 and 2

Supplementary Data 1. Sample and library metadata. Supplementary Data 2. Virus metadata.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, YF., Zhao, H., Gou, QY. et al. Metagenomic analysis of individual mosquito viromes reveals the geographical patterns and drivers of viral diversity. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02365-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing