Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contributions of human cultures to biodiversity and ecosystem conservation

Abstract

The expansion of globalized industrial societies is causing global warming, ecosystem degradation, and species and language extinctions worldwide. Mainstream conservation efforts still focus on nature protection strategies to revert this crisis, often overlooking the essential roles of Indigenous Peoples and Local Communities (IP&LC) in protecting biodiversity and ecosystems globally. Here we assess the scientific literature to identify relationships between biodiversity (including ecosystem diversity) and cultural diversity, and investigate how these connections may affect conservation outcomes in tropical lowland South America. Our assessment reveals a network of interactions and feedbacks between biodiversity and diverse IP&LC, suggesting interconnectedness and interdependencies from which multiple benefits to nature and societies emerge. We illustrate our findings with five case studies of successful conservation models, described as consolidated or promising ‘social–ecological hope spots’, that show how engagement with IP&LC of various cultures may be the best hope for biodiversity and ecosystem conservation, particularly when aligned with science and technology. In light of these five inspiring cases, we argue that conservation science and policies need to recognize that protecting and promoting both biological and cultural diversities can provide additional co-benefits and solutions to maintain ecosystems resilient in the face of global changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variation of biocultural diversity across South America, with the locations of consolidated and promising social–ecological hope spots.

Similar content being viewed by others

References

  1. Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Article  PubMed  Google Scholar 

  2. Watson, J. E. M. et al. Protect the last of the wild. Nature 563, 27–30 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Riggio, J. et al. Global human influence maps reveal clear opportunities in conserving Earth’s remaining intact terrestrial ecosystems. Glob. Change Biol. 26, 4344–4356 (2020).

    Article  ADS  Google Scholar 

  5. Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).

    Article  ADS  Google Scholar 

  6. Fletcher, M.-S., Hamilton, R., Dressler, W. & Palmer, L. Indigenous knowledge and the shackles of wilderness. Proc. Natl Acad. Sci. USA 118, e2022218118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernández-Llamazares, Á. et al. Reframing the wilderness concept can bolster collaborative conservation. Trends Ecol. Evol. 35, 750–753 (2020).

    Article  PubMed  Google Scholar 

  8. Roberts, P. Tropical Forests in Prehistory, History, and Modernity (Oxford Univ. Press, 2019).

  9. Roberts, P., Hunt, C., Arroyo-Kalin, M., Evans, D. & Boivin, N. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nat. Plants 3, 17093 (2017).

    Article  PubMed  Google Scholar 

  10. Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yalanji Warranga Kaban: Yalanji People of the Rainforest Fire Management Book (Little Ramsay Press, 2004).

  12. Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).

    Article  Google Scholar 

  13. Fa, J. E. et al. Importance of Indigenous Peoples’ lands for the conservation of Intact Forest Landscapes. Front. Ecol. Environ. 18, 135–140 (2020).

    Article  Google Scholar 

  14. Porter-Bolland, L. et al. Community managed forests and forest protected areas: an assessment of their conservation effectiveness across the tropics. Ecol. Manag. 268, 6–17 (2012).

    Article  Google Scholar 

  15. Gorenflo, L. J., Romaine, S., Mittermeier, R. A. & Walker-Painemilla, K. Co-occurrence of linguistic and biological diversity in biodiversity hotspots and high biodiversity wilderness areas. Proc. Natl Acad. Sci. USA 109, 8032–8037 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clement, C. R. et al. Naturalness is in the eye of the beholder. Front. Glob. Change 4, 800294 (2021).

    Article  Google Scholar 

  17. Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).

    Article  Google Scholar 

  18. United Nations Declaration on the Rights of Indigenous Peoples (United Nations, 2007).

  19. Reyes-García, V. et al. Recognizing Indigenous peoples’ and local communities’ rights and agency in the post-2020 Biodiversity Agenda. Ambio 51, 84–92 (2022).

    Article  ADS  PubMed  Google Scholar 

  20. Transforming our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

  21. Brondizio, E. S. & Tourneau, F.-M. L. Environmental governance for all. Science 352, 1272–1273 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Independent Group of Scientists appointed by the Secretary-General. Global Sustainable Development Report 2019: The Future is Now – Science for Achieving Sustainable Development (United Nations, 2019).

  23. Díaz, S. et al. The IPBES Conceptual Framework — connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).

    Article  Google Scholar 

  24. Zheng, X. et al. Consideration of culture is vital if we are to achieve the Sustainable Development Goals. One Earth 4, 307–319 (2021).

    Article  ADS  Google Scholar 

  25. Brondízio, E. S. et al. Locally based, regionally manifested, and globally relevant: Indigenous and local knowledge, values, and practices for nature. Annu. Rev. Environ. Resour. 46, 481–509 (2021).

    Article  Google Scholar 

  26. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933 (2001).

    Article  Google Scholar 

  27. Balée, W. The research program of historical ecology. Annu. Rev. Anthropol. 35, 75–98 (2006).

    Article  Google Scholar 

  28. Arroyo-Kalin, M. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds Isendahl, C. & Stump, D.) 90–109 (Oxford Univ. Press, 2019).

  29. Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clement, C. R. et al. Disentangling domestication from food production systems in the Neotropics. Quaternary 4, 4 (2021).

    Article  Google Scholar 

  31. Bueno, L. & Isnardis, A. Peopling Central Brazilian Plateau at the onset of the Holocene: building territorial histories. Quat. Int. 473, 144–160 (2018).

    Article  Google Scholar 

  32. Balée, W. L. Cultural Forests of the Amazon: A Historical Ecology of People and Their Landscapes (Univ. Alabama Press, 2013).

  33. Albuquerque, U. P. et al. Humans as niche constructors: revisiting the concept of chronic anthropogenic disturbances in ecology. Perspect. Ecol. Conserv. 16, 1–11 (2018).

    Google Scholar 

  34. Laland, K., Matthews, B. & Feldman, M. W. An introduction to niche construction theory. Evol. Ecol. 30, 191–202 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Odonne, G. et al. Long‐term influence of early human occupations on current forests of the Guiana Shield. Ecology 100, e02806 (2019).

    Article  PubMed  Google Scholar 

  37. Franco-Moraes, J., Braga, L. & Clement, C. The Zoʻé perspective on what scientists call ‘forest management’ and its implications for floristic diversity and biocultural conservation. Ecol. Soc. 28, art37 (2023).

    Article  Google Scholar 

  38. Schmidt, M. J. et al. Intentional creation of carbon-rich dark earth soils in the Amazon. Sci. Adv. 9, eadh8499 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Levis, C. et al. How people domesticated Amazonian forests. Front. Ecol. Evol. 5, 171 (2018).

    Article  Google Scholar 

  40. Quintero-Vallejo, E. et al. Amazonian dark earth shapes the understory plant community in a Bolivian forest. Biotropica 47, 152–161 (2015).

    Article  Google Scholar 

  41. Oliveira, E. A. et al. Legacy of Amazonian Dark Earth soils on forest structure and species composition. Glob. Ecol. Biogeogr. 29, 1458–1473 (2020).

    Article  Google Scholar 

  42. Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lins, J. et al. Pre-Columbian floristic legacies in modern homegardens of central Amazonia. PLoS ONE 10, e0127067 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Junqueira, A. B., Stomph, T. J., Clement, C. R. & Struik, P. C. Variation in soil fertility influences cycle dynamics and crop diversity in shifting cultivation systems. Agric. Ecosyst. Environ. 215, 122–132 (2016).

    Article  Google Scholar 

  45. Lombardo, U. et al. Early Holocene crop cultivation and landscape modification in Amazonia. Nature 581, 190–193 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Erickson, C. L. in The Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 157–183 (Springer, 2008).

  48. Junqueira, A. B., Shepard, G. H. & Clement, C. R. Secondary forests on anthropogenic soils in Brazilian Amazonia conserve agrobiodiversity. Biodivers. Conserv. 19, 1933–1961 (2010).

    Article  Google Scholar 

  49. Levis, C. et al. Pre-Columbian soil fertilization and current management maintain food resource availability in old-growth Amazonian forests. Plant Soil 450, 29–48 (2020).

    Article  CAS  Google Scholar 

  50. Ferreira, M. J., Levis, C., Chaves, L., Clement, C. R. & Soldati, G. T. Indigenous and traditional management creates and maintains the diversity of ecosystems of South American tropical savannas. Front. Environ. Sci. 10, 809404 (2022).

    Article  Google Scholar 

  51. Grossman, J. M. et al. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb. Ecol. 60, 192–205 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Ruivo, M. et al. Amazonian Dark Earths: Wim Sombroek’s Vision (eds Woods, W. I. et al.) 351–362 (Springer, 2009).

  53. Lucheta, A. R., de Souza Cannavan, F., Tsai, S. M. & Kuramae, E. E. Amazonian Dark Earth and its black carbon particles harbor different fungal abundance and diversity. Pedosphere 27, 832–845 (2017).

    Article  CAS  Google Scholar 

  54. Demetrio, W. C. et al. A ‘dirty’ footprint: macroinvertebrate diversity in Amazonian anthropic soils. Glob. Change Biol. 27, 4575–4591 (2021).

    Article  MathSciNet  CAS  Google Scholar 

  55. Rodrigues, J. L. M. et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc. Natl Acad. Sci. USA 110, 988–993 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Franco-Moraes, J. et al. Historical landscape domestication in ancestral forests with nutrient-poor soils in northwestern Amazonia. For. Ecol. Manag. 446, 317–330 (2019).

    Article  Google Scholar 

  58. Ojeda, J., Salomon, A. K., Rowe, J. K. & Ban, N. C. Reciprocal contributions between people and nature: a conceptual intervention. BioScience 72, 952–962 (2022).

    Article  Google Scholar 

  59. Fausto, C. in Animism in Rainforest and Tundra: Personhood, Animals, Plants and Things in Contemporary Amazonia and Siberia (eds Brightman, M. et al.) https://doi.org/10.1515/9780857454690 (Berghahn Books, 2012).

  60. Gallois, D. Movimento na Cosmologia Waiapi: Criação, Expansão e Transformação do Universo PhD thesis, Univ. São Paulo (1988).

  61. Tomioka Nilsson, M. S. & Fearnside, P. M. Yanomami mobility and its effects on the forest landscape. Hum. Ecol. 39, 235–256 (2011).

    Article  Google Scholar 

  62. Pereira Cruz, A. et al. Pre-colonial Amerindian legacies in forest composition of southern Brazil. PLoS ONE 15, e0235819 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. BioScience 59, 593–601 (2009).

    Article  Google Scholar 

  64. Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. J. S. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pivello, V. R. The use of fire in the Cerrado and Amazonian rainforests of Brazil: past and present. Fire Ecol. 7, 24–39 (2011).

    Article  Google Scholar 

  66. Overbeck, G. E., Scasta, J. D., Furquim, F. F., Boldrini, I. I. & Weir, J. R. The South Brazilian grasslands – a South American tallgrass prairie? Parallels and implications of fire dependency. Perspect. Ecol. Conserv. 16, 24–30 (2018).

    Google Scholar 

  67. Mistry, J. & Berardi, A. Bridging indigenous and scientific knowledge. Science 352, 1274–1275 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Moura, L. C., Scariot, A. O., Schmidt, I. B., Beatty, R. & Russell-Smith, J. The legacy of colonial fire management policies on traditional livelihoods and ecological sustainability in savannas: impacts, consequences, new directions. J. Environ. Manag. 232, 600–606 (2019).

    Article  Google Scholar 

  69. Maezumi, S. Y. et al. New insights from pre-Columbian land use and fire management in Amazonian dark earth forests. Front. Ecol. Evol. 6, 111 (2018).

    Article  Google Scholar 

  70. Bernardi, R. E., Holmgren, M., Arim, M. & Scheffer, M. Why are forests so scarce in subtropical South America? The shaping roles of climate, fire and livestock. Ecol. Manag. 363, 212–217 (2016).

    Article  Google Scholar 

  71. Sühs, R. B., Giehl, E. L. H. & Peroni, N. Preventing traditional management can cause grassland loss within 30 years in southern Brazil. Sci. Rep. 10, 783 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  72. Abreu, R. C. R. et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  73. Berkes, F., Colding, J. & Folke, C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol. Appl. 10, 1251–1262 (2000).

    Article  Google Scholar 

  74. Antonelli, A. Indigenous knowledge is key to sustainable food systems. Nature 613, 239–242 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).

    Article  PubMed  Google Scholar 

  76. Neves, E. G. in Povos Tradicionais e Biodiversidade no Brasil: Contribuições dos Povos Indígenas, Quilombolas e Comunidades Tradicionais Para a Biodiversidade, Políticas e Ameaças (eds da Cunha, M. C. et al.) Seção 6 (SBPC, 2021).

  77. Shock, M. P. & Watling, J. Plantes et peuplement: questions et enjeux relatifs à la manipulation et à la domestication de végétaux au Pléistocène final et à l’Holocène initial au Brésil et en Amazonie. Brésils https://doi.org/10.4000/bresils.12408 (2022).

  78. Iriarte, J. et al. The origins of Amazonian landscapes: plant cultivation, domestication and the spread of food production in tropical South America. Quat. Sci. Rev. 248, 106582 (2020).

    Article  Google Scholar 

  79. Watling, J. et al. Direct archaeological evidence for Southwestern Amazonia as an early plant domestication and food production centre. PLoS ONE 13, e0199868 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cámara-Leret, R., Fortuna, M. A. & Bascompte, J. Indigenous knowledge networks in the face of global change. Proc. Natl Acad. Sci. USA 116, 9913–9918 (2019).

  81. Cámara-Leret, R. et al. Ecological community traits and traditional knowledge shape palm ecosystem services in northwestern South America. Ecol. Manag. 334, 28–42 (2014).

    Article  Google Scholar 

  82. Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118, e2103683118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Flores, B. M. & Levis, C. Human-food feedback in tropical forests. Science 372, 1146–1147 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Robinson, M. et al. Uncoupling human and climate drivers of late Holocene vegetation change in southern Brazil. Sci. Rep. 8, 7800 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  85. Reis, M. S., dos, Ladio, A. & Peroni, N. Landscapes with araucaria in South America: evidence for a cultural dimension. Ecol. Soc. 19, 43 (2014).

    Article  Google Scholar 

  86. Bogoni, J. A., Muniz-Tagliari, M., Peroni, N. & Peres, C. A. Testing the keystone plant resource role of a flagship subtropical tree species (Araucaria angustifolia) in the Brazilian Atlantic Forest. Ecol. Indic. 118, 106778 (2020).

    Article  Google Scholar 

  87. Sühs, R. B., Giehl, E. L. H. & Peroni, N. Interaction of land management and araucaria trees in the maintenance of landscape diversity in the highlands of southern Brazil. PLoS ONE 13, e0206805 (2018).

    Article  Google Scholar 

  88. Bogoni, J. A., Graipel, M. E. & Peroni, N. The ecological footprint of Acca sellowiana domestication maintains the residual vertebrate diversity in threatened highlands of Atlantic Forest. PLoS ONE 13, e0195199 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Albuquerque, U. P., de Lima Araújo, E., de Castro, C. C. & Alves, R. R. N. in Caatinga (eds Silva, J. M. C. et al.) 303–333 (Springer, 2017).

  90. de Freitas Lins Neto, E. M., de Oliveira, I. F., Britto, F. B. & de Albuquerque, U. P. Traditional knowledge, genetic and morphological diversity in populations of Spondias tuberosa Arruda (Anacardiaceae). Genet. Resour. Crop Evol. 60, 1389–1406 (2013).

    Article  Google Scholar 

  91. Almeida, G. M. A., Ramos, M. A., Araújo, E. L., Baldauf, C. & Albuquerque, U. P. Human perceptions of landscape change: The case of a monodominant forest of Attalea speciosa Mart ex. Spreng (Northeast Brazil). Ambio 45, 458–467 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  92. Campos, J. L. A., Albuquerque, U. P., Peroni, N., Araújo, E. & de, L. Population structure and fruit availability of the babassu palm (Attalea speciosa Mart. ex Spreng) in human-dominated landscapes of the Northeast Region of Brazil. Acta Bot. Bras. 31, 267–275 (2017).

    Article  Google Scholar 

  93. Pretty, J. et al. The intersections of biological diversity and cultural diversity: towards integration. Conserv. Soc. 7, 100–112 (2009).

    Article  Google Scholar 

  94. Lyver, P. O., Timoti, P., Davis, T. & Tylianakis, J. M. Biocultural hysteresis inhibits adaptation to environmental change. Trends Ecol. Evol. 34, 771–780 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Frainer, A. et al. Opinion: cultural and linguistic diversities are underappreciated pillars of biodiversity. Proc. Natl Acad. Sci. USA 117, 26539–26543 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Clement, C. R. 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ. Bot. 53, 188–202 (1999).

    Article  Google Scholar 

  97. Rice, J., Seixas, C. S., Zaccagnini, M. E., Bedoya-Gaitán, M. & Valderrama, N. The Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas (IPBES, 2018).

  98. Shepard, G. H. Jr., Levi, T., Neves, E. G., Peres, C. A. & Yu, D. W. Hunting in ancient and modern Amazonia: rethinking sustainability. Am. Anthropol. 114, 652–667 (2012).

    Article  Google Scholar 

  99. Barnosky, A. D. & Lindsey, E. L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat. Int. 217, 10–29 (2010).

    Article  Google Scholar 

  100. Freitas, C. T. et al. Co‐management of culturally important species: a tool to promote biodiversity conservation and human well‐being. People Nat. 2, 61–81 (2020).

    Article  Google Scholar 

  101. Schuster, R., Germain, R. R., Bennett, J. R., Reo, N. J. & Arcese, P. Vertebrate biodiversity on indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Policy 101, 1–6 (2019).

    Article  Google Scholar 

  102. Estrada, A. et al. Global importance of Indigenous Peoples, their lands, and knowledge systems for saving the world’s primates from extinction. Sci. Adv. 8, eabn2927 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Levi, T., Shepard, G. H. Jr, Ohl-Schacherer, J., Peres, C. A. & Yu, D. W. Modelling the long-term sustainability of indigenous hunting in Manu National Park, Peru: landscape-scale management implications for Amazonia. J. Appl. Ecol. 46, 804–814 (2009).

    Article  Google Scholar 

  104. Fernández-Llamazares, Á. & Virtanen, P. K. Game masters and Amazonian Indigenous views on sustainability. Curr. Opin. Environ. Sustain. 43, 21–27 (2020).

    Article  Google Scholar 

  105. Read, J. M. et al. Space, Place, and Hunting Patterns among Indigenous Peoples of the Guyanese Rupununi Region. J. Lat. Am. Geogr. 9, 213–243 (2010).

    Article  Google Scholar 

  106. Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Shepard, G. H. et al. in Oxford Research Encyclopedia of Environmental Science https://doi.org/10.1093/acrefore/9780199389414.013.597 (Oxford Univ. Press, 2020).

  108. Clement, C. R., Levis, C., Franco-Moraes, J. & Junqueira, A. B. in Participatory Biodiversity Conservation (ed. Baldauf, C.) https://doi.org/10.1007/978-3-030-41686-7_3 (Springer, 2020).

  109. Aminpour, P. et al. The diversity bonus in pooling local knowledge about complex problems. Proc. Natl Acad. Sci. USA 118, e2016887118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brandon, K. E. & Wells, M. Planning for people and parks: design dilemmas. World Dev. 20, 557–570 (1992).

    Article  Google Scholar 

  111. Gavin, M. C. et al. Defining biocultural approaches to conservation. Trends Ecol. Evol. 30, 140–145 (2015).

    Article  PubMed  Google Scholar 

  112. Bennett, E. M. et al. Bright spots: seeds of a good Anthropocene. Front. Ecol. Environ. 14, 441–448 (2016).

    Article  Google Scholar 

  113. Clement, C. R. 1492 and the loss of amazonian crop genetic resources. II. Crop biogeography at contact. Econ. Bot. 53, 203–216 (1999).

    Article  Google Scholar 

  114. Rezende, C. L. et al. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 16, 208–214 (2018).

    Google Scholar 

  115. Mittermeier, R. A., Myers, N., Thomsen, J. B., da Fonseca, G. A. B. & Olivieri, S. Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv. Biol. 12, 516–520 (1998).

    Article  Google Scholar 

  116. Clement, C. R. et al. The domestication of Amazonia before European conquest. Proc. R. Soc. B 282, 20150813 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Souza, J. G. et al. Pre-Columbian earth-builders settled along the entire southern rim of the Amazon. Nat. Commun. 9, 1125 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  118. Heckenberger, M. J. et al. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 1214–1217 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Prümers, H., Betancourt, C. J., Iriarte, J., Robinson, M. & Schaich, M. Lidar reveals pre-Hispanic low-density urbanism in the Bolivian Amazon. Nature 606, 325–328 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  120. Heckenberger, M. J. in Landscapes of Pre-Industrial Urbanism 225–261 (Georges Farhat, 2020).

  121. Smith, M. & Fausto, C. Socialidade e diversidade de pequis (Caryocar brasiliense, Caryocaraceae) entre os Kuikuro do alto rio Xingu (Brasil). Bol. Mus. Para. Emílio Goeldi. Ciênc. Hum. 11, 87–113 (2016).

    Article  Google Scholar 

  122. Fausto, C., Smith, M., Schmidt, M. J. & Miller, R. O in Povos Tradicionais e Biodiversidade no Brasil: Contribuições dos Povos Indígenas, Quilombolas e Comunidades Tradicionais Para a Biodiversidade, Políticas e Ameaças (eds da Cunha, M. C. et al.) Sesão 15 (SBPC, in the press).

  123. Amazon Hopes Collective. The Xingu Firewall: a story map. ArcGIS StoryMaps https://storymaps.arcgis.com/stories/d13c50b64ada4e53856b3d4d64a08bcb (2020).

  124. Fausto, C., Franchetto, B. & Heckenberger, M. in Typological Studies in Language (eds Harrison, K. D. et al.) Vol. 78, 129–158 (John Benjamins Publishing Company, 2008).

  125. Gadsden, D. COVID-19: Amazonian tribe applies locational intelligence to protect community. ESRI Blog: Public Health https://www.esri.com/about/newsroom/blog/kuikuro-amazon-tribe-gis-protection (18 August 2020).

  126. Brondizio, E. S., Ostrom, E. & Young, O. R. Connectivity and the governance of multilevel social-ecological systems: the role of social capital. Annu. Rev. Environ. Resour. 34, 253–278 (2009).

    Article  Google Scholar 

  127. Schwartzman, S. et al. The natural and social history of the indigenous lands and protected areas corridor of the Xingu River basin. Philos. Trans. R. Soc. B 368, 20120164 (2013).

    Article  Google Scholar 

  128. Freire, P. Pedagogy of Hope: Reliving Pedagogy of the Oppressed (Continuum, 1994).

  129. Prestes-Carneiro, G., Béarez, P., Bailon, S., Rapp Py-Daniel, A. & Neves, E. G. Subsistence fishery at Hatahara (750–1230 CE), a pre-Columbian central Amazonian village. J. Archaeol. Sci. Rep. 8, 454–462 (2016).

    Google Scholar 

  130. Castello, L. & Stewart, D. J. Assessing CITES non-detriment findings procedures for Arapaima in Brazil. J. Appl. Ichthyol. 26, 49–56 (2010).

    Article  Google Scholar 

  131. Castello, L., Viana, J. P., Watkins, G., Pinedo-Vasquez, M. & Luzadis, V. A. Lessons from integrating fishers of arapaima in small-scale fisheries management at the Mamirauá Reserve, Amazon. Environ. Manag. 43, 197–209 (2009).

    Article  ADS  Google Scholar 

  132. Castello, L. A method to count Pirarucu Arapaima gigas: fishers, assessment, and management. N. Am. J. Fish. Manag. 24, 379–389 (2004).

    Article  Google Scholar 

  133. Campos-Silva, J. V. & Peres, C. A. Community-based management induces rapid recovery of a high-value tropical freshwater fishery. Sci. Rep. 6, 34745 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Petersen, T. A., Brum, S. M., Rossoni, F., Silveira, G. F. V. & Castello, L. Recovery of Arapaima sp. populations by community-based management in floodplains of the Purus River, Amazon. J. Fish. Biol. 89, 241–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Campos‐Silva, J. V., Hawes, J. E. & Peres, C. A. Population recovery, seasonal site fidelity, and daily activity of pirarucu (Arapaima spp.) in an Amazonian floodplain mosaic. Freshw. Biol. 64, 1255–1264 (2019).

    Article  Google Scholar 

  136. Campos-Silva, J. V., Hawes, J. E., Freitas, C. T., Andrade, P. C. M. & Peres, C. A. in Participatory Biodiversity Conservation (ed. Baldauf, C.) https://doi.org/10.1007/978-3-030-41686-7_7 (Springer, 2020).

  137. Freitas, C. T., Espírito-Santo, H. M. V., Campos-Silva, J. V., Peres, C. A. & Lopes, P. F. M. Resource co-management as a step towards gender equity in fisheries. Ecol. Econ. 176, 106709 (2020).

    Article  Google Scholar 

  138. Campos-Silva, J. V. et al. Sustainable-use protected areas catalyze enhanced livelihoods in rural Amazonia. Proc. Natl Acad. Sci. USA 118, e2105480118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Leal, I. R., Da Silva, J. M. C., Tabarelli, M. & Lacher, T. E. Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conserv. Biol. 19, 701–706 (2005).

    Article  Google Scholar 

  140. Pessis, A.-M. & Guidon, N. Serra da Capivara National Park, Brazil: cultural heritage and society. World Archaeol. 39, 406–416 (2007).

    Article  Google Scholar 

  141. Beuchle, R. et al. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. 58, 116–127 (2015).

    Article  Google Scholar 

  142. Flores, B. M. et al. Tropical riparian forests in danger from large savanna wildfires. J. Appl. Ecol. 58, 419–430 (2021).

    Article  Google Scholar 

  143. Durigan, G. & Ratter, J. A. The need for a consistent fire policy for Cerrado conservation. J. Appl. Ecol. 53, 11–15 (2016).

    Article  Google Scholar 

  144. Simon, M. F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl Acad. Sci. USA 106, 20359–20364 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mistry, J. et al. Indigenous fire management in the Cerrado of Brazil: the case of the Krahô of Tocantíns. Hum. Ecol. 33, 365–386 (2005).

    Article  Google Scholar 

  146. Eloy, L., Bilbao, B. A., Mistry, J. & Schmidt, I. B. From fire suppression to fire management: advances and resistances to changes in fire policy in the savannas of Brazil and Venezuela. Geogr. J. 185, 10–22 (2019).

    Article  Google Scholar 

  147. Mistry, J., Bilbao, B. A. & Berardi, A. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America. Philos. Trans. R. Soc. B 371, 20150174 (2016).

    Article  Google Scholar 

  148. de Melo, M. M. & Saito, C. H. The practice of burning savannas for hunting by the Xavante Indians based on the stars and constellations. Soc. Nat. Resourc. 26, 478–487 (2013).

    Article  Google Scholar 

  149. Welch, J. R., Brondízio, E. S., Hetrick, S. S. & Coimbra, C. E. A. Indigenous burning as conservation practice: neotropical savanna recovery amid agribusiness deforestation in central Brazil. PLoS ONE 8, e81226 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  150. Bengtsson, J. et al. Grasslands-more important for ecosystem services than you might think. Ecosphere 10, e02582 (2019).

    Article  Google Scholar 

  151. Welch, J. R. & Coimbra, C. E. A. Jr Indigenous fire ecologies, restoration, and territorial sovereignty in the Brazilian Cerrado: the case of two Xavante reserves. Land Use Policy 104, 104055 (2021).

    Article  Google Scholar 

  152. Mistry, J., Schmidt, I. B., Eloy, L. & Bilbao, B. New perspectives in fire management in South American savannas: the importance of intercultural governance. Ambio 48, 172–179 (2019).

    Article  ADS  PubMed  Google Scholar 

  153. Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).

    Article  Google Scholar 

  154. Tagliari, M. M. et al. Collaborative management as a way to enhance Araucaria Forest resilience. Perspect. Ecol. Conserv. 19, 131–142 (2021).

  155. Reis, M. S. et al. Domesticated landscapes in araucaria forests, southern Brazil: a multispecies local conservation-by-use system. Front. Ecol. Evol. 6, 11 (2018).

    Article  Google Scholar 

  156. Tagliari, M. M., Bogoni, J. A., Blanco, G. D., Cruz, A. P. & Peroni, N. Disrupting a socio-ecological system: could traditional ecological knowledge be the key to preserving the Araucaria Forest in Brazil under climate change? Clim. Change 176, 2 (2023).

    Article  ADS  Google Scholar 

  157. Tengö, M., Brondizio, E. S., Elmqvist, T., Malmer, P. & Spierenburg, M. Connecting diverse knowledge systems for enhanced ecosystem governance: the multiple evidence base approach. Ambio 43, 579–591 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  158. Decade of Action to deliver the Global Goals. United Nations https://www.un.org/sustainabledevelopment/decade-of-action/ (2023).

  159. Messerli, P. et al. Expansion of sustainability science needed for the SDGs. Nat. Sustain. 2, 892–894 (2019).

    Article  Google Scholar 

  160. Coscieme, L. et al. Multiple conceptualizations of nature are key to inclusivity and legitimacy in global environmental governance. Environ. Sci. Policy 104, 36–42 (2020).

    Article  Google Scholar 

  161. Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 325, 419–422 (2009).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  162. Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  163. Principles for Building Resilience: Sustaining Ecosystem Services in Social-ecological Systems https://doi.org/10.1017/CBO9781316014240 (Cambridge Univ. Press, 2015).

  164. Welch, J. R. Learning to hunt by tending the fire: Xavante youth, ethnoecology, and ceremony in Central Brazil. J. Ethnobiol. 35, 183–208 (2023).

  165. Eberhard, D. M., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World (SIL International, 2021).

  166. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  167. Graeber, D. & Wengrow, D. The Dawn of Everything: A New History of Humanity (Farrar, Straus and Giroux, 2021).

  168. Descola, P. & Pálsson, G. Nature and Society: Anthropological Perspectives (Taylor and Francis e-Library, 2004).

  169. Viveiros de Castro, E. V. Exchanging perspectives: the transformation of objects into subjects in Amerindian ontologies. Common Knowl. 10, 463–484 (2004).

    Article  Google Scholar 

  170. Zent, E. & Zent, S. Love sustains life: Jkyo jkwainï and allied strategies in caring for the Earth. J. Ethnobiol. 42, 86–104 (2022).

  171. Furquim, L. P. et al. Facing change through diversity: resilience and diversification of plant management strategies during the mid to late Holocene transition at the Monte Castelo Shellmound, SW Amazonia. Quaternary 4, 8 (2021).

    Article  Google Scholar 

  172. Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20 (2010).

    Article  Google Scholar 

  173. The Convention on Biological Diversity. CBD https://www.cbd.int/convention/articles/?a=cbd-02 (2006).

  174. Maffi, L. Linguistic, cultural and biological diversity. Annu. Rev. Anthropol. 34, 599–617 (2005).

    Article  Google Scholar 

  175. Odling-Smee, J., Erwin, D. H., Palkovacs, E. P., Feldman, M. W. & Laland, K. N. Niche construction theory: a practical guide for ecologists. Q. Rev. Biol. 88, 3–28 (2013).

    Article  Google Scholar 

  176. Georgakopoulos, A. Mission Blue. Humanit. Soc. 40, 466–468 (2016).

    Article  Google Scholar 

  177. Berkes, F. Environmental governance for the Anthropocene? Social-ecological systems, resilience, and collaborative learning. Sustainability 9, 1232 (2017).

    Article  Google Scholar 

  178. Folke, C. et al. Our future in the Anthropocene biosphere. Ambio 50, 834–869 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  179. Koch, A., Brierley, C., Maslin, M. M. & Lewis, S. L. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quat. Sci. Rev. 207, 13–36 (2019).

    Article  ADS  Google Scholar 

  180. Flores, B. M. & Staal, A. Feedback in tropical forests of the Anthropocene. Glob. Change Biol. 28, 5041–5061 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.L. thanks the Brazilian Federal Agency for Suport and Evaluation of Graduate Education (CAPES, 88887.474572/2020-00), Brazilian National Council for Scientific and Technological Development (CNPq, 159440/2018-1 and 151231/2021-4) for post-doctoral fellowships, CAPES for the CAPES Thesis Award 2019, and Brazil LAB (Luso-Afro-Brazilian Studies) at the Princeton Institute for International and Regional Studies of Princeton University for supporting her research. B.M.F. is supported by the Instituto Serrapilheira (Serra‐1709‐18983). C.R.C. thanks CNPq (303477/2018-0) for a research fellowship, N.P. thanks CNPq (310443/2015-6) for a research fellowship. M.C.G.P. thanks CAPES via the Amazon Face Program (INPA/CAPES 88881.154644/2017-01 and 88887.373727/2019-00). Materials pertaining to the Xingu hope spot were supported by NSF (BCS 0004487, 053129, 1660459), the William Talbott Hillman Foundation, the Pennywise Foundation and the Puente Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.L., B.M.F. and C.R.C. conceived the study. C.L., B.M.F., C.R.C. and N.P. conducted the literature review. J.V.C.-S. and C.L. were responsible for all promising case studies and M.H., W.D., H.L., C.F., B.F., J.W., B.M., M.S., T.W.K., H.K., K.W., K.K. and A.K. were responsible for the Xingu hope spot. C.L., B.M.F., C.R.C., N.P., J.V.C.-S., A.S., M.C.G.P., M.H., W.D., H.L., C.F., B.F., J.W., B.M., M.S., T.W.K., H.K., K.W., K.K. and A.K. interpreted the full literature review. C.L. led the writing of the article, and B.M.F., C.R.C., N.P., J.V.C.-S., A.S., M.C.G.P., M.H., H.L., J.W. and C.F. substantially revised it. All authors agreed to this version for submission.

Corresponding author

Correspondence to Carolina Levis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Sarah-Lan Mathez-Stiefel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Xingu Hope Spot in the Southern Transitional Forest of Brazilian Amazonia.

(a) ArcGIS maps including the TIX and surroundings, archaeological sites and features and modern villages. (b) Pre-Columbian complex systems of land management and urbanized landscapes in the TIX. (c) Kuikuru modern village. (d) Indigenous participation in mapping and real-time data collection. Image credits: AIKAX123.

Extended Data Fig. 2 Collaborative management of giant arapaima fish in Amazonian floodplains.

(a) Co-management of arapaima habitats. (b) Harvesting arapaima fishes according to local needs. (c) Improving welfare and gender equality. Photos credits: Marcos Amend/Instituto Juruá and Andre Dib/Insituto Juruá.

Supplementary information

Supplementary Information

Supplementary methods.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levis, C., Flores, B.M., Campos-Silva, J.V. et al. Contributions of human cultures to biodiversity and ecosystem conservation. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02356-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing