Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meta-analysis reveals weak associations between reef fishes and corals

Abstract

Habitat associations underpin species ecologies in high-diversity systems. Within tropical, shallow water coral reefs, the relationship between fishes and corals is arguably the most iconic and highly scrutinized. A strong relationship between fishes and reef-building hard corals is often assumed, a belief supported by studies that document the decline of reef fishes following coral loss. However, the extent of this relationship is often unclear, as evidenced by conflicting reports. Here we assess the strength of this ecological association by relying on literature that has surveyed both fishes and corals synchronously. We quantitatively synthesize 723 bivariate correlation coefficients (from 66 papers), published over 38 years, that relate fish metrics (abundance, biomass and species richness) with the percentage of hard coral cover. Remarkably, despite extensive variation, the pattern of association on a global scale reveals a predominantly positive, albeit weak (|r| < 0.4), correlation. Even for commonly hypothesized drivers of fish–coral associations, fish family and trophic group, associations were consistently weak. These findings question our assumptions regarding the strength and ubiquity of fish–coral associations, and caution against assuming a direct and omnipresent relationship between these two iconic animal groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coral use among fishes and the correlation coefficients (r) between fish metrics (abundance, biomass and species richness) and the percentage of coral cover.
Fig. 2: Posterior distribution of correlation coefficients (r) between fish metrics (abundance, biomass and species richness) and the percentage of coral cover.
Fig. 3: Posterior distribution of correlation coefficients (r) between fish metrics (abundance, biomass and species richness) and the percentage of coral cover across two distinct geographic realms.
Fig. 4: Posterior distribution of correlation coefficients (r) between fish abundance and the percentage of coral cover.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during our study is available at https://doi.org/10.25903/chbr-5x77.

Code availability

The codes generated during our study is available at https://doi.org/10.25903/chbr-5x77.

References

  1. Morrison, M. L., Marcot, B. & Mannan, W. Wildlife–Habitat Relationships: Concepts and Applications (Island Press, 2012).

  2. MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).

    Article  Google Scholar 

  3. Soto-Shoender, J. R., McCleery, R. A., Monadjem, A. & Gwinn, D. C. The importance of grass cover for mammalian diversity and habitat associations in a bush encroached savanna. Biol. Conserv. 221, 127–136 (2018).

    Article  Google Scholar 

  4. Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Bellwood, D. R. & Hughes, T. P. Regional-scale assembly rules and biodiversity of coral reefs. Science 292, 1532–1534 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Komyakova, V., Munday, P. L. & Jones, G. P. Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS ONE 8, e83178 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stoddart, D. R. Ecology and morphology of recent coral reefs. Biol. Rev. 44, 433–498 (1969).

    Article  Google Scholar 

  8. Cheal, A. J. et al. Responses of coral and fish assemblages to a severe but short-lived tropical cyclone on the Great Barrier Reef, Australia. Coral Reefs 21, 131–142 (2002).

    Article  Google Scholar 

  9. Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Jones, G. P. & Syms, G. Disturbance, habitat structure and the ecology of fishes on coral reefs. Aust. J. Ecol. 23, 287–297 (1998).

    Article  Google Scholar 

  11. Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126 (2014).

    Article  Google Scholar 

  12. Cole, A. J., Pratchett, M. S. & Jones, G. P. Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish. 9, 286–307 (2008).

    Article  Google Scholar 

  13. Russ, G. R., Rizzari, J. R., Abesamis, R. A. & Alcala, A. C. Coral cover a stronger driver of reef fish trophic biomass than fishing. Ecol. Appl. 31, e02224 (2021).

    Article  PubMed  Google Scholar 

  14. Bell, J. & Galzin, R. Influence of live coral cover on coral-reef fish communities. Mar. Ecol. Prog. Ser. 15, 265–274 (1984).

    Article  Google Scholar 

  15. Booth, D. J. & Beretta, G. A. Changes in a fish assemblage after a coral bleaching event. Mar. Ecol. Prog. Ser. 245, 205–212 (2002).

    Article  Google Scholar 

  16. Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl Acad. Sci. USA 101, 8251–8253 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biol. 12, 2220–2234 (2006).

    Article  Google Scholar 

  18. Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).

    Article  Google Scholar 

  19. Ceccarelli, D. M., Emslie, M. J. & Richards, Z. T. Post-disturbance stability of fish assemblages measured at coarse taxonomic resolution masks change at finer scales. PLoS ONE 11, e0156232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yan, H. F. & Bellwood, D. R. Multi-decadal stability of fish productivity despite increasing coral reef degradation. Funct. Ecol. 37, 1245–1255 (2023).

    Article  CAS  Google Scholar 

  21. Friedlander, A. M. & Parrish, J. D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Biol. Ecol. 224, 1–30 (1998).

    Article  Google Scholar 

  22. Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Young fishes persist despite coral loss on the Great Barrier Reef. Commun. Biol. 2, 1–7, 456 (2019).

    Article  Google Scholar 

  24. Wilson, S. K. et al. Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J. Anim. Ecol. 77, 220–228 (2008).

    Article  PubMed  Google Scholar 

  25. Siqueira, A. C., Muruga, P. & Bellwood, D. R. On the evolution of fish–coral interactions. Ecol. Lett. 26, 1348–1358 (2023).

    Article  PubMed  Google Scholar 

  26. Pratchett, M. S. et al. in Oceanography and Marine Biology Vol. 46, 251–296 (CRC Press, 2008).

  27. Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).

    Article  Google Scholar 

  28. Strona, G. et al. Global tropical reef fish richness could decline by around half if corals are lost. Proc. Biol. Sci. 288, 20210274 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Borenstein, M., Hedges, L. V, Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-analysis (John Wiley & Sons, 2009).

  31. Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 82, 591–605 (2007).

    Article  PubMed  Google Scholar 

  32. Schober, P. & Schwarte, L. A. Correlation coefficients: appropriate use and interpretation. Anesth. Analg. 126, 1763–1768 (2018).

    Article  PubMed  Google Scholar 

  33. Bejarano, I. & Appeldoorn, R. S. Seawater turbidity and fish communities on coral reefs of Puerto Rico. Mar. Ecol. Prog. Ser. 474, 217–226 (2013).

    Article  Google Scholar 

  34. Benfield, S., Baxter, L., Guzman, H. M. & Mair, J. M. A comparison of coral reef and coral community fish assemblages in Pacific Panama and environmental factors governing their structure. J. Mar. Biol. Assoc. U. K. 88, 1331–1341 (2008).

    Article  Google Scholar 

  35. Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, 1–33 (2015).

    Article  Google Scholar 

  36. Bouchon-Navaro, Y. & Bouchon, C. Correlations between chaetodontid fishes and coral communities of the Gulf of Aqaba (Red Sea). Environ. Biol. Fishes 25, 47–60 (1989).

    Article  Google Scholar 

  37. Brewer, T. D., Cinner, J. E., Green, A. & Pandolfi, J. M. Thresholds and multiple scale interaction of environment, resource use, and market proximity on reef fishery resources in the Solomon Islands. Biol. Conserv. 142, 1797–1807 (2009).

    Article  Google Scholar 

  38. Burt, J. A. et al. Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J. Mar. Sci. 68, 1875–1883 (2011).

    Article  Google Scholar 

  39. Campbell, S. J. et al. Avoiding conflicts and protecting coral reefs: customary management benefits marine habitats and fish biomass. Oryx 46, 486–494 (2012).

    Article  Google Scholar 

  40. Chung, F. C., Komilus, C. F. & Mustafa, S. Effect of the creation of a marine protected area on populations of Coral Trout in the coral triangle region. Reg. Stud. Mar. Sci. 10, 1–9 (2017).

    CAS  Google Scholar 

  41. Cox, C., Valdivia, A., McField, M., Castillo, K. & Bruno, J. F. Establishment of marine protected areas alone does not restore coral reef communities in Belize. Mar. Ecol. Prog. Ser. 563, 65–79 (2017).

    Article  Google Scholar 

  42. Crosby, M. P. & Reese, E. S. Relationship of habitat stability and intra-specific population dynamics of an obligate corallivore butterflyfish. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 13–25 (2005).

    Article  Google Scholar 

  43. Dominici-Arosemena, A. & Wolff, M. Reef fish community structure in the Tropical Eastern Pacific (Panamá): living on a relatively stable rocky reef environment. Helgol. Mar. Res. 60, 287–305 (2006).

    Article  Google Scholar 

  44. Emslie, M. J., Pratchett, M. S., Cheal, A. J. & Osborne, K. Great Barrier Reef butterflyfish community structure: the role of shelf position and benthic community type. Coral Reefs 29, 705–715 (2010).

    Article  Google Scholar 

  45. Emslie, M. J. et al. Regional-scale variation in the distribution and abundance of farming damselfishes on Australia’s Great Barrier Reef. Mar. Biol. 159, 1293–1304 (2012).

    Article  Google Scholar 

  46. Epstein, H. E. & Kingsford, M. J. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ. Biol. Fishes 102, 479–497 (2019).

    Article  Google Scholar 

  47. Espinosa-Andrade, N., Suchley, A., Reyes-Bonilla, H. & Alvarez-Filip, L. The no-take zone network of the Mexican Caribbean: assessing design and management for the protection of coral reef fish communities. Biodivers. Conserv. 29, 2069–2087 (2020).

    Article  Google Scholar 

  48. Feary, D. A. et al. Fish communities on the world’s warmest reefs: what can they tell us about the effects of climate change in the future? J. Fish Biol. 77, 1931–1947 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Feeney, W. E. et al. Long term relationship between farming damselfish, predators, competitors and benthic habitat on coral reefs of Moorea Island. Sci. Rep. 11, 1–8, 14548 (2021).

    Article  Google Scholar 

  50. Galbraith, G. F., Cresswell, B. J., McCormick, M. I., Bridge, T. C. & Jones, G. P. High diversity, abundance and distinct fish assemblages on submerged coral reef pinnacles compared to shallow emergent reefs. Coral Reefs 40, 335–354 (2021).

    Article  Google Scholar 

  51. Garpe, K. C. & Öhman, M. C. Non-random habitat use by coral reef fish recruits in Mafia Island Marine Park, Tanzania. Afr. J. Mar. Sci. 29, 187–199 (2007).

    Article  Google Scholar 

  52. Garpe, K. C. & Öhman, M. C. Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish–habitat interactions. Hydrobiologia 498, 191–211 (2003).

    Article  Google Scholar 

  53. Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W. & Serafy, J. E. Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar. Ecol. Prog. Ser. 495, 233–247 (2014).

    Article  Google Scholar 

  54. Graham, N. A. J., Wilson, S. K., Pratchett, M. S., Polunin, N. V. C. & Spalding, M. D. Coral mortality versus structural collapse as drivers of corallivorous butterflyfish decline. Biodivers. Conserv. 18, 3325–3336 (2009).

    Article  Google Scholar 

  55. Harborne, A. R. et al. Direct and indirect effects of nursery habitats on coral-reef fish assemblages, grazing pressure and benthic dynamics. Oikos 125, 957–967 (2016).

    Article  Google Scholar 

  56. Hempson, T. N. et al. Coral reef mesopredators switch prey, shortening food chains, in response to habitat degradation. Ecol. Evol. 7, 2626–2635 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hoey, A. S., Pratchett, M. S. & Cvitanovic, C. High macroalgal cover and low coral recruitment undermines the potential resilience of the world’s southernmost coral reef assemblages. PLoS ONE 6, e25824 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Howard, K. G., Schumacher, B. D. & Parrish, J. D. Community structure and habitat associations of parrotfishes on Oahu, Hawaii. Environ. Biol. Fishes 85, 175–186 (2009).

    Article  Google Scholar 

  59. Johansson, C. L., Bellwood, D. R. & Depczynski, M. The importance of live coral for small-sized herbivorous reef fishes in physically challenging environments. Mar. Freshw. Res. 63, 672–679 (2012).

    Article  Google Scholar 

  60. Khalaf, M. A. & Abdallah, M. Spatial distribution of fifty ornamental fish species on coral reefs in the Red Sea and Gulf of Aden. Zookeys 367, 33–64 (2014).

    Article  Google Scholar 

  61. Khalaf, M. A. & Kochzius, M. Community structure and biogeography of shore fishes in the Gulf of Aqaba, Red Sea. Helgol. Mar. Res. 55, 252–284 (2002).

    Article  Google Scholar 

  62. Kingsford, M. J. Contrasting patterns of reef utilization and recruitment of coral trout (Plectropomus leopardus) and snapper (Lutjanus carponotatus) at One Tree Island, southern Great Barrier Reef. Coral Reefs 28, 251–264 (2009).

    Article  Google Scholar 

  63. Lamy, T., Galzin, R., Kulbicki, M., Lison de Loma, T. & Claudet, J. Three decades of recurrent declines and recoveries in corals belie ongoing change in fish assemblages. Coral Reefs 35, 293–302 (2016).

    Article  Google Scholar 

  64. Lawton, R. J. & Pratchett, M. S. Influence of dietary specialization and resource availability on geographical variation in abundance of butterflyfish. Ecol. Evol. 2, 1347–1361 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lester, S. E. et al. Caribbean reefs of the Anthropocene: variance in ecosystem metrics indicates bright spots on coral depauperate reefs. Global Change Biol. 26, 4785–4799 (2020).

    Article  Google Scholar 

  66. Lin, X. et al. Disturbance-mediated changes in coral reef habitat provoke a positive feeding response in a major coral reef detritivore, Ctenochaetus striatus. Front. Mar. Sci. 8, 682697 (2021).

    Article  Google Scholar 

  67. López-Pérez, R. A., Calderon-Aguilera, L. E., Zepeta-Vilchis, R. C., López Pérez Maldonado, I. & López Ortiz, A. M. Species composition, habitat configuration and seasonal changes of coral reef fish assemblages in western Mexico. J. Appl. Ichthyol. 29, 437–448 (2013).

    Article  Google Scholar 

  68. MacDonald, C., Bridge, T. C. L. & Jones, G. P. Depth, bay position and habitat structure as determinants of coral reef fish distributions: are deep reefs a potential refuge? Mar. Ecol. Prog. Ser. 561, 217–231 (2016).

    Article  Google Scholar 

  69. Madduppa, H. H., Zamani, N. P., Subhan, B., Aktani, U. & Ferse, S. C. A. Feeding behavior and diet of the eight-banded butterflyfish Chaetodon octofasciatus in the Thousand Islands, Indonesia. Environ. Biol. Fishes 97, 1353–1365 (2014).

    Article  Google Scholar 

  70. Mangubhai, S., Strauch, A. M., Obura, D. O., Stone, G. & Rotjan, R. D. Short-term changes of fish assemblages observed in the near-pristine reefs of the Phoenix Islands. Rev. Fish Biol. Fish. 24, 505–518 (2014).

    Article  Google Scholar 

  71. McClanahan, T. R. & Arthur, R. The effect of marine reserves and habitat on populations of East African coral reef fishes. Ecol. Appl. 11, 559–569 (2001).

    Article  Google Scholar 

  72. McIlwain, J. L. & Jones, G. P. Prey selection by an obligate coral-feeding wrasse and its response to small-scale disturbance. Mar. Ecol. Prog. Ser. 155, 189–198 (1997).

    Article  Google Scholar 

  73. Nagelkerken, I., Vermonden, K., Moraes, O. C. C., Debrot, A. O. & Nagelkerken, W. P. Changes in coral reef communities and an associated reef fish species, Cephalopholis cruentata (Lacépède), after 30 years on Curaçao (Netherlands Antilles). Hydrobiologia 549, 145–154 (2005).

    Article  Google Scholar 

  74. Nugraha, W. A., Mubarak, F., Husaini, E. & Evendi, H. The correlation of coral reef cover and rugosity with coral reef fish density in east Java waters. J. Ilm. Perikan. dan. Kelaut. 12, 131–139 (2020).

    Article  Google Scholar 

  75. Öhman, M. C. & Rajasuriya, A. Relationships between habitat structure and fish communities on coral and sandstone reefs. Environ. Biol. Fishes 53, 19–31 (1998).

    Article  Google Scholar 

  76. Öhman, M. C., Rajasuriya, A. & Svensson, S. The use of butterflyfishes (Chaetodontidae) as bio-indicators of habitat structure and human disturbance. Ambio 27, 509–513 (1998).

    Google Scholar 

  77. Pratchett, M. S. & Berumen, M. L. Interspecific variation in distributions and diets of coral reef butterflyfishes (Teleostei: Chaetodontidae). J. Fish Biol. 73, 1730–1747 (2008).

    Article  Google Scholar 

  78. Pratchett, M. S. et al. Functional composition of Chaetodon butterflyfishes at a peripheral and extreme coral reef location, the Persian Gulf. Mar. Pollut. Bull. 72, 333–341 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Price, B. A. et al. Responses of benthic habitat and fish to severe tropical cyclone Winston in Fiji. Coral Reefs 40, 807–819 (2021).

    Article  Google Scholar 

  80. Roberts, C. & Ormond, R. Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Mar. Ecol. Prog. Ser. 41, 1–8 (1987).

    Article  CAS  Google Scholar 

  81. Rousseau, Y., Galzin, R. & Maréchal, J. P. Impact of hurricane Dean on coral reef benthic and fish structure of Martinique, French West Indies. Cybium 34, 243–256 (2010).

    Google Scholar 

  82. Sawayama, S., Nurdin, N., Akbar AS, M., Sakamoto, S. X. & Komatsu, T. Introduction of geospatial perspective to the ecology of fish–habitat relationships in Indonesian coral reefs: a remote sensing approach. Ocean Sci. J. 50, 343–352 (2015).

    Article  CAS  Google Scholar 

  83. Tilot, V., Leujak, W., Ormond, R. F. G., Ashworth, J. A. & Mabrouk, A. Monitoring of South Sinai coral reefs: influence of natural and anthropogenic factors. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1109–1126 (2008).

    Article  Google Scholar 

  84. Tony, F., Soemarno, S., Wiadnya, D. G. K. & Hakim, L. Habitat biodiversity as a determinant of fish community structure on coral reefs in Halang Melingkau Island, Kotabaru, South Kalimantan, Indonesia. Egypt. J. Aquat. Biol. Fish. 25, 351–370 (2021).

    Article  Google Scholar 

  85. Urbina-Barreto, I. et al. Underwater photogrammetry reveals new links between coral reefscape traits and fishes that ensure key functions. Ecosphere 13, e3934 (2022).

    Article  Google Scholar 

  86. Vermeij, M. J. A. et al. Negative effects of gardening damselfish Stegastes planifrons on coral health depend on predator abundance. Mar. Ecol. Prog. Ser. 528, 289–296 (2015).

    Article  Google Scholar 

  87. Vessaz, F., Marsh, C. J., Bijoux, J., Gendron, G. & Mason-Parker, C. Recovery trajectories of oceanic reef ecosystems following multiple mass coral bleaching events. Mar. Biol. 169, 1–14, 23 (2022).

    Article  Google Scholar 

  88. Viviani, J. et al. Synchrony patterns reveal different degrees of trophic guild vulnerability after disturbances in a coral reef fish community. Divers. Distrib. 25, 1210–1221 (2019).

    Article  Google Scholar 

  89. Wilson, S. K., Robinson, J. P. W., Chong-Seng, K., Robinson, J. & Graham, N. A. J. Boom and bust of keystone structure on coral reefs. Coral Reefs 38, 625–635 (2019).

    Article  Google Scholar 

  90. Fowler, A. Spatial and temporal patterns of distribution and abundance of chaetodontid fishes at One Tree Reef, southern GBR. Mar. Ecol. Prog. Ser. 64, 39–53 (1990).

    Article  Google Scholar 

  91. Beldade, R., Mills, S. C., Claudet, J. & Côté, I. M. More coral, more fish? Contrasting snapshots from a remote Pacific atoll. PeerJ 3, 1–17,e745 (2015).

    Article  Google Scholar 

  92. Boström-Einarsson, L., Bonin, M. C., Munday, P. L. & Jones, G. P. Strong intraspecific competition and habitat selectivity influence abundance of a coral-dwelling damselfish. J. Exp. Mar. Biol. Ecol. 448, 85–92 (2013).

    Article  Google Scholar 

  93. Harrer, M., Cuijpers, P., Furukawa, T. A. & Ebert, D. D. Doing Meta-analysis with R: A Hands-on Guide (Chapman and Hall/CRC, 2021).

  94. Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Alvarez-Filip, L., Gill, J. A. & Dulvy, N. K. Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere 2, 1–17 (2011).

    Article  Google Scholar 

  97. Morais, R. A., Siqueira, A. C., Smallhorn-West, P. F. & Bellwood, D. R. Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol. 19, 4–6 (2021).

    Article  Google Scholar 

  98. Allen, G. R. Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 541–556 (2008).

    Article  Google Scholar 

  99. Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. Camb. Philos. Soc. 92, 878–901 (2017).

    Article  PubMed  Google Scholar 

  100. Streit, R. P., Hemingson, C. R., Cumming, G. S. & Bellwood, D. R. How flexible are habitat specialists? Short-term space use in obligate coral-dwelling damselfishes. Rev. Fish Biol. Fish. 31, 381–398 (2021).

    Article  Google Scholar 

  101. Fanelli, D. Negative results are disappearing from most disciplines and countries. Scientometrics 90, 891–904 (2012).

    Article  Google Scholar 

  102. Sullivan, G. M. & Feinn, R. Using effect size—or why the P value is not enough. J. Grad. Med. Educ. 4, 279–282 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kimmel, K., Avolio, M. L. & Ferraro, P. J. Empirical evidence of widespread exaggeration bias and selective reporting in ecology. Nat. Ecol. Evol. 7, 1525–1536 (2023).

    Article  PubMed  Google Scholar 

  104. Roberts, P. D., Stewart, G. B. & Pullin, A. S. Are review articles a reliable source of evidence to support conservation and environmental management? A comparison with medicine. Biol. Conserv. 132, 409–423 (2006).

    Article  Google Scholar 

  105. Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).

    Article  Google Scholar 

  106. Paddack, M. J. et al. Recent region-wide declines in Caribbean reef fish abundance. Curr. Biol. 19, 590–595 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Adam, T. C. et al. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations. Oecologia 176, 285–296 (2014).

    Article  PubMed  Google Scholar 

  108. Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Morais, J., Morais, R., Tebbett, S. B. & Bellwood, D. R. On the fate of dead coral colonies. Funct. Ecol. 36, 3148–3160 (2022).

    Article  CAS  Google Scholar 

  110. Chase, T. J. & Hoogenboom, M. O. Differential occupation of available coral hosts by coral-dwelling damselfish (Pomacentridae) on Australia’s Great Barrier Reef. Diversity 11, 219 (2019).

    Article  Google Scholar 

  111. Holbrook, S. J., Forrester, G. E. & Schmitt, R. J. Spatial patterns in abundance of a damselfish reflect availability of suitable habitat. Oecologia 122, 109–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Doherty, P. & Fowler, T. An empirical test of recruitment limitation in a coral reef fish. Science 263, 935–939 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Sale, P. F. & Douglas, W. A. Temporal variability in the community structure of fish on coral patch reefs and the relation of community structure to reef structure. Ecology 65, 409–422 (1984).

    Article  Google Scholar 

  114. Tsai, C. H., Sweatman, H. P. A., Thibaut, L. M. & Connolly, S. R. Volatility in coral cover erodes niche structure, but not diversity, in reef fish assemblages. Sci. Adv. 8, eabm6858 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hixon, M. A. in Ecology of Fishes on Coral Reefs (ed. Mora, C.) 41–52 (Cambridge Univ. Press, 2015)

  116. Walsh, W. J. Stability of a coral reef fish community following a catastrophic storm. Coral Reefs 2, 49–63 (1983).

    Article  Google Scholar 

  117. Foo, Y. Z., O’Dea, R. E., Koricheva, J., Nakagawa, S. & Lagisz, M. A practical guide to question formation, systematic searching and study screening for literature reviews in ecology and evolution. Methods Ecol. Evol. 12, 1705–1720 (2021).

    Article  Google Scholar 

  118. Osenberg, C. W., Sarnelle, O., Cooper, S. D. & Holt, R. D. Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology 80, 1105–1117 (1999).

    Article  Google Scholar 

  119. Harrison, F. Getting started with meta-analysis. Methods Ecol. Evol. 2, 1–10 (2011).

    Article  Google Scholar 

  120. Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G., PRISMA Group*. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269 (2009).

    Article  PubMed  Google Scholar 

  121. Lajeunesse, M. J. in Handbook of Meta-analysis in Ecology and Evolution (Koricheva, J., Gurevitch, J. & Mengersen, K.) 195–206 (2013).

  122. Aloe, A. M. & Thompson, C. G. The synthesis of partial effect sizes. J. Soc. Soc. Work Res. 4, 390–405 (2013).

    Article  Google Scholar 

  123. Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, 1985)

  124. Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Nakagawa for providing foundational work on performing biological meta-analyses and subsequent statistical clarifications. We also thank members of the Reef Function Hub for insightful discussions, and H. Yan and M. Logan for assistance and clarifications in statistical modelling. Funding was provided by the Australian Research Council (Laureate grant LF190100062 to D.R.B.), with a postdoctoral fellowship to A.C.S. and a PhD scholarship to P.M.

Author information

Authors and Affiliations

Authors

Contributions

P.M., A.C.S. and D.R.B. conceived the study. P.M. collected the data, performed the analyses and wrote the first draft of the paper. P.M., A.C.S. and D.R.B. contributed substantially to revisions.

Corresponding author

Correspondence to Pooventhran Muruga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Workflow of systematic review process.

Flow chart shows the search string used to gather research articles from two databases and the decision tree (criteria) used to assess the suitability of papers to be included in the meta-analysis.

Extended Data Fig. 2 Distribution (raw data) of re-calculated correlation coefficients (r) across fish metrics.

Data was extracted from 66 papers (n = 723). (a) fish abundance, (b) biomass, and (c) species richness. Conventional limits are used to denote the strength of association (for example weak, moderate, strong). Based on raw data, median correlations are weak across all metrics. Note that raw data does not account for hierarchical structure of multiple effect sizes from the same study (see methods).

Extended Data Fig. 3 Funnel plots displaying the relationship between Fisher’s-z transformed correlation coefficients and their respective standard errors for each of the fish metrics.

(a) fish abundance, (b) biomass, and (c) species richness. Estimates were derived from fitting a three-level hierarchical random effects model (effect size nested within study). Roughly symmetrical scatter of data points suggests the absence of publication bias. This was further assessed using Egger’s regression tests conducted on each fish metric using the standard error of Fisher’s-z transformed correlation coefficients. Tests indicate the absence of publication bias across all metrics (p-value: abundance = 0.908, biomass = 0.647, richness = 0.441).

Extended Data Fig. 4 Posterior distribution of correlation coefficients (r) between fish metrics and different categories of coral morphology.

Models were conducted separately for (a) fish abundance and (b) fish species richness. Estimates were derived from posterior samples extracted from a hierarchical Bayesian model. The plot displays the sample size n (number of r, number of papers from which r were extracted), and the credible interval (probability) of the estimates. Conventional limits are used to denote the strength of association (for example weak, moderate), with r = 0 (dashed line) indicating no association. Note: complex coral refers to coral with branching structures (for example Acropora sp.). Non-complex coral refers to coral without any branching structures (for example massive Porites sp.). Total Live CC (coral cover) refers to surveys that sample all live coral cover. Median r values indicate weak associations across different coral morphologies, with the exception of Total live CC for richness (moderate).

Extended Data Fig. 5 Posterior distribution of correlation coefficients (r) between fish metrics and percent coral cover for surveys that sampled both fish and coral within same transect (Yes) or separately (No).

Estimates were derived from posterior samples extracted from a hierarchical Bayesian models conducted separately for (a) fish abundance, (b) biomass, and (c) species richness. Each plot displays the sample size n (number of r, number of papers from which r were extracted) for each model, and the credible interval (probability) of the estimates. Conventional limits are used to denote the strength of association (for example weak, moderate, strong), with r = 0 (dashed line) indicating no association. Median r values indicate weak fish-coral associations irrespective of fish and coral being sampled within the same transect.

Extended Data Fig. 6 Relationships between correlation coefficients (r) and publication year (of individual studies).

Estimates for black lines (mean) and coloured 95% credible interval (probability) were derived from posterior samples extracted from hierarchical Bayesian models conducted separately for r between percent coral cover and (a) fish abundance, (b) biomass, and (c) species richness. Each plot displays the sample size n (number of r, number of papers from which r were extracted) for each model. Points reflect re-calculated r values extracted from individual papers. Across all fish metrics, credible interval values for slopes include 0 (abundance: −0.019–0.002, biomass: −0.014–0.029, richness: −0.027–0.004), which suggest no specific trend (that is the year of publication of each study does not affect the reported fish-coral association), and predominantly weak associations regardless of publication year.

Extended Data Fig. 7 Relationships between correlation coefficients (r) estimates and the duration (no. of years) of dataset (used to calculate r).

Estimates for black lines (mean) and coloured 95% credible interval (probability) were derived from posterior samples extracted from hierarchical Bayesian models conducted separately for r between percent coral cover and (a) fish abundance, (b) biomass, and (c) species richness. Each plot displays the sample size n (number of r, number of papers from which r were extracted) for each model. Points reflect re-calculated r values extracted from individual papers. Across all fish metrics credible interval values for slopes include 0 (abundance: −0.019–0.002, biomass: −0.112–0.062, richness: −0.187–0.082), which suggest no specific trend (that is the duration of study does not affect the reported fish-coral association) and predominantly weak associations regardless of duration of sampling.

Extended Data Fig. 8 Relationships between correlation coefficients (r) estimates and mean percent coral cover (used to calculate r).

Estimates for black lines (mean) and coloured 95% credible interval (probability) were derived from posterior samples extracted from hierarchical Bayesian models conducted separately for r between mean percent coral cover and (a) fish abundance, (b) biomass, and (c) species richness. Each plot displays the sample size n (number of r, number of papers from which r were extracted) for each model. Points reflect re-calculated r values extracted from individual papers. Across all fish metrics credible interval values for slopes include 0 (abundance: −0.005–0.006, biomass: −0.021–0.004, richness: −0.033–0), which suggest no specific trend (that is, the mean coral cover sampled within study does not affect the reported fish-coral association).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muruga, P., Siqueira, A.C. & Bellwood, D.R. Meta-analysis reveals weak associations between reef fishes and corals. Nat Ecol Evol 8, 676–685 (2024). https://doi.org/10.1038/s41559-024-02334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02334-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing