Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity

Abstract

Megafauna (animals ≥45 kg) have probably shaped the Earth’s terrestrial ecosystems for millions of years with pronounced impacts on biogeochemistry, vegetation, ecological communities and evolutionary processes. However, a quantitative global synthesis on the generality of megafauna effects on ecosystems is lacking. Here we conducted a meta-analysis of 297 studies and 5,990 individual observations across six continents to determine how wild herbivorous megafauna influence ecosystem structure, ecological processes and spatial heterogeneity, and whether these impacts depend on body size and environmental factors. Despite large variability in megafauna effects, we show that megafauna significantly alter soil nutrient availability, promote open vegetation structure and reduce the abundance of smaller animals. Other responses (14 out of 26), including, for example, soil carbon, were not significantly affected. Further, megafauna significantly increase ecosystem heterogeneity by affecting spatial heterogeneity in vegetation structure and the abundance and diversity of smaller animals. Given that spatial heterogeneity is considered an important driver of biodiversity across taxonomic groups and scales, these results support the hypothesis that megafauna may promote biodiversity at large scales. Megafauna declined precipitously in diversity and abundance since the late Pleistocene, and our results indicate that their restoration would substantially influence Earth’s terrestrial ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of herbivorous megafauna on mean ecosystem responses and heterogeneity within these responses.
Fig. 2: Impacts of herbivorous megafauna on different ecosystem responses and their heterogeneity.
Fig. 3: Predictions of significant covariates.
Fig. 4: Locations of the studies used in this meta-analysis.

Similar content being viewed by others

Data availability

All data are available on figshare: https://figshare.com/projects/Data_and_scripts_for_manuscript_Worldwide_evidence_that_wild_megafauna_shape_ecosystem_properties_and_promote_spatial_heterogeneity_/180031 ref. 103.

Code availability

All core analysis and figure scripts are available on figshare: https://figshare.com/projects/Data_and_scripts_for_manuscript_Worldwide_evidence_that_wild_megafauna_shape_ecosystem_properties_and_promote_spatial_heterogeneity_/180031 ref. 103.

References

  1. Moleón, M. et al. Rethinking megafauna. Proc. R. Soc. B 287, 20192643 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martin, P. S. & Wright, H. E. Pleistocene Extinctions: The Search for a Cause (Yale Univ. Press, 1967).

  3. Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).

    Article  PubMed  Google Scholar 

  4. Smith, F. A., Elliott Smith, R. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 281, 20133254 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ubilla, M., Rinderknecht, A., Corona, A. & Perea, D. Mammals in last 30 to 7 ka interval (Late Pleistocene-Early Holocene) in Southern Uruguay (Santa Lucía River Basin): last occurrences, climate, and biogeography. J. Mammal. Evol. 25, 291–300 (2018).

    Article  Google Scholar 

  7. Lemoine, R. T., Buitenwerf, R. & Svenning, J.-C. Megafauna extinctions in the late-Quaternary are linked to human range expansion, not climate change. Anthropocene https://doi.org/10.1016/j.ancene.2023.100403 (2023).

  8. Bergman, J. et al. Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change. Nat. Commun. 14, 7679 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Karp, A. T., Faith, J. T., Marlon, J. R. & Staver, A. C. Global response of fire activity to late Quaternary grazer extinctions. Science 374, 1145–1148 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pringle, R. M. et al. Impacts of large herbivores on terrestrial ecosystems. Curr. Biol. 33, R584–R610 (2023).

    Article  PubMed  Google Scholar 

  15. Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).

    Article  Google Scholar 

  16. Hobbs, N. T. Modification of ecosystems by ungulates. J. Wildl. Manage. 60, 695–713 (1996).

    Article  Google Scholar 

  17. Kristensen, J. A., Svenning, J.-C., Georgiou, K. & Malhi, Y. Can large herbivores enhance ecosystem carbon persistence? Trends Ecol. Evol. 37, 117–128 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Schrama, M. et al. An integrated perspective to explain nitrogen mineralization in grazed ecosystems. Perspect. Plant Ecol. Evol. Syst. 15, 32–44 (2013).

    Article  Google Scholar 

  19. Guldemond, R. & Van Aarde, R. A meta-analysis of the impact of African elephants on savanna vegetation. J. Wildl. Manage. 72, 892–899 (2008).

    Google Scholar 

  20. Keesing, F. & Young, T. P. Cascading consequences of the loss of large mammals in an African savanna. BioScience 64, 487–495 (2014).

    Article  Google Scholar 

  21. Ogada, D. L., Gadd, M. E., Ostfeld, R. S., Young, T. P. & Keesing, F. Impacts of large herbivorous mammals on bird diversity and abundance in an African savanna. Oecologia 156, 387–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Faith, J. T., Rowan, J. & Du, A. Reply to Weihmann: fifty gazelles do not equal an elephant, and other ecological misunderstandings. Proc. Natl Acad. Sci. USA 117, 3370–3371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Owen-Smith, R. N. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).

  24. Sitters, J. et al. Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Glob. Change Biol. 26, 2060–2071 (2020).

    Article  Google Scholar 

  25. Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).

    Article  PubMed  Google Scholar 

  26. Hansen, D. M. & Galetti, M. The forgotten megafauna. Science 324, 42–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Augustine, D. J. & Frank, D. A. Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. Ecology 82, 3149–3162 (2001).

    Article  Google Scholar 

  28. Knapp, A. K. et al. The keystone role of bison in North American tallgrass prairie: bison increase habitat heterogeneity and alter a broad array of plant, community, and ecosystem processes. BioScience 49, 39–50 (1999).

    Article  Google Scholar 

  29. Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    Article  PubMed  Google Scholar 

  30. Stein, A. & Kreft, H. Terminology and quantification of environmental heterogeneity in species-richness research. Biol. Rev. 90, 815–836 (2015).

    Article  PubMed  Google Scholar 

  31. Tietje, M. et al. Global variation in diversification rate and species richness are unlinked in plants. Proc. Natl Acad. Sci. USA 119, e2120662119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mungi, N. A., Jhala, Y. V., Qureshi, Q., le Roux, E. & Svenning, J.-C. Megaherbivores provide biotic resistance against alien plant dominance. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-023-02181-y (2023).

  33. Biggs, C. R. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 11, e03184 (2020).

    Article  Google Scholar 

  34. Folke, C. Resilience: the emergence of a perspective for social–ecological systems analyses. Glob. Environ. Change 16, 253–267 (2006).

    Article  Google Scholar 

  35. Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl Acad. Sci. USA 113, 793–797 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Senior, A. M., Viechtbauer, W. & Nakagawa, S. Revisiting and expanding the meta-analysis of variation: the log coefficient of variation ratio. Res. Synth. Methods 11, 553–567 (2020).

    Article  PubMed  Google Scholar 

  37. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  38. Daskin, J. H. & Pringle, R. M. Does primary productivity modulate the indirect effects of large herbivores? A global meta-analysis. J. Anim. Ecol. 85, 857–868 (2016).

    Article  PubMed  Google Scholar 

  39. Pringle, R. M., Young, T. P., Rubenstein, D. I. & McCauley, D. J. Herbivore-initiated interaction cascades and their modulation by productivity in an African savanna. Proc. Natl Acad. Sci. USA 104, 193–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Bakker, E. S. & Svenning, J.-C. Trophic rewilding as a climate change mitigation strategy. Phil. Trans. R. Soc. https://doi.org/10.1098/rstb.2017.0432 (2018).

  41. Schmitz, O. J. et al. Trophic rewilding can expand natural climate solutions. Nat. Clim. Chang. https://doi.org/10.1038/s41558-023-01631-6 (2023).

  42. le Roux, E., van Veenhuisen, L. S., Kerley, G. I. H. & Cromsigt, J. P. G. M. Animal body size distribution influences the ratios of nutrients supplied to plants. Proc. Natl Acad. Sci. USA 117, 22256–22263 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. McInturf, A. G., Pollack, L., Yang, L. H. & Spiegel, O. Vectors with autonomy: what distinguishes animal‐mediated nutrient transport from abiotic vectors? Biol. Rev. 94, 1761–1773 (2019).

    Article  PubMed  Google Scholar 

  44. Hooker, H. D. Liebig’s law of the minimum in relation to general biological problems. Science 46, 197–204 (1917).

    Article  PubMed  Google Scholar 

  45. Menge, D. N. L. & Field, C. B. Simulated global changes alter phosphorus demand in annual grassland. Glob. Change Biol. 13, 2582–2591 (2007).

    Article  Google Scholar 

  46. Noy-Meir, I. Compensating growth of grazed plants and its relevance to the use of rangelands. Ecol. Appl. 3, 32–34 (1993).

    Article  PubMed  Google Scholar 

  47. McNaughton, S. J. Compensatory plant growth as a response to herbivory. Oikos 40, 329–336 (1983).

    Article  Google Scholar 

  48. Wardle, D. A., Bonner, K. I. & Barker, G. M. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct. Ecol. 16, 585–595 (2002).

    Article  Google Scholar 

  49. Wetzel, W. C., Kharouba, H. M., Robinson, M., Holyoak, M. & Karban, R. Variability in plant nutrients reduces insect herbivore performance. Nature 539, 425–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Mcmillan, B. R., Cottam, M. R. & Kaufman, D. W. Wallowing behavior of American bison (Bos bison) in tallgrass prairie: an examination of alternate explanations. Am. Midl. Nat. 144, 159–167 (2000).

    Article  Google Scholar 

  51. Howison, R. A., Olff, H., van de Koppel, J. & Smit, C. Biotically driven vegetation mosaics in grazing ecosystems: the battle between bioturbation and biocompaction. Ecol. Monogr. 87, 363–378 (2017).

    Article  Google Scholar 

  52. Schmitz, O. J. et al. Animals and the zoogeochemistry of the carbon cycle. Science 362, eaar3213 (2018).

    Article  PubMed  Google Scholar 

  53. Andriuzzi, W. S. & Wall, D. H. Responses of belowground communities to large aboveground herbivores: meta-analysis reveals biome-dependent patterns and critical research gaps. Glob. Change Biol. 23, 3857–3868 (2017).

    Article  Google Scholar 

  54. Forbes, E. S. et al. Synthesizing the effects of large, wild herbivore exclusion on ecosystem function. Funct. Ecol. 33, 1597–1610 (2019).

    Article  Google Scholar 

  55. Jia, S. et al. Global signal of top-down control of terrestrial plant communities by herbivores. Proc. Natl Acad. Sci. USA 115, 6237–6242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Potter, A. B. & Pringle, R. M. in The Equids: A Suite of Splendid Species (eds Prins, H. H. T. & Gordon, I. J.) 171–207 (Springer, 2023).

  57. Jarman, P. J. The social organisation of antelope in relation to their ecology. Behaviour 48, 215–267 (1974).

    Article  Google Scholar 

  58. Coverdale, T. C. et al. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology 97, 3219–3230 (2016).

    Article  PubMed  Google Scholar 

  59. Ripple, W. J. et al. Status and ecological effects of the world’ s largest carnivores. Science 343, 151–164 (2014).

    Article  CAS  Google Scholar 

  60. Faurby, S. & Svenning, J.-C. Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Divers. Distrib. 21, 1155–1166 (2015).

    Article  Google Scholar 

  61. Laundre, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).

    Article  Google Scholar 

  62. Long, R. A., Wambua, A., Goheen, J. R., Palmer, T. M. & Pringle, R. M. Climatic variation modulates the indirect effects of large herbivores on small‐mammal habitat use. J. Anim. Ecol. 86, 739–748 (2017).

    Article  PubMed  Google Scholar 

  63. Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol. 29, 681–691 (2014).

    Article  PubMed  Google Scholar 

  64. Heidrich, L. et al. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 4, 1204–1212 (2020).

    Article  PubMed  Google Scholar 

  65. Yang, Z. et al. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Sci. Rep. 5, 15723 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barzan, F. R., Bellis, L. M. & Dardanelli, S. Livestock grazing constrains bird abundance and species richness: a global meta-analysis. Basic Appl. Ecol. 56, 289–298 (2021).

    Article  Google Scholar 

  67. Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).

    Article  Google Scholar 

  68. Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. K. Complex agricultural landscapes host more biodiversity than simple ones: a global meta-analysis. Proc. Natl Acad. Sci. USA 119, e2203385119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stark, J., Lehman, R., Crawford, L., Enquist, B. J. & Blonder, B. Does environmental heterogeneity drive functional trait variation? A test in montane and alpine meadows. Oikos 126, 1650–1659 (2017).

    Article  Google Scholar 

  70. Hedberg, C. P., Lyons, S. K. & Smith, F. A. The hidden legacy of megafaunal extinction: loss of functional diversity and resilience over the Late Quaternary at Hall’s Cave. Glob. Ecol. Biogeogr. 31, 294–307 (2022).

    Article  Google Scholar 

  71. Leimu, R. & Koricheva, J. What determines the citation frequency of ecological papers? Trends Ecol. Evol. 20, 28–32 (2005).

    Article  PubMed  Google Scholar 

  72. Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 19, 10–15 (2014).

    Article  Google Scholar 

  73. Wang, L. et al. Tree cover and its heterogeneity in natural ecosystems is linked to large herbivore biomass globally. One Earth https://doi.org/10.1016/j.oneear.2023.10.007 (2023).

  74. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  75. Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).

    Article  Google Scholar 

  76. Trabucco, A. & Zomer, R. Global aridity index and potential evapotranspiration (ET0) climate database v.3. Figshare https://doi.org/10.6084/M9.FIGSHARE.7504448.V4 (2022).

  77. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schweiger, A. H., Boulangeat, I., Conradi, T., Davis, M. & Svenning, J.-C. The importance of ecological memory for trophic rewilding as an ecosystem restoration approach. Biol. Rev. 94, 1–15 (2019).

    Article  PubMed  Google Scholar 

  79. Price, J. N. et al. Evolutionary history of grazing and resources determine herbivore exclusion effects on plant diversity. Nat. Ecol. Evol. 6, 1290–1298 (2022).

    Article  PubMed  Google Scholar 

  80. Doughty, C. E., Wolf, A. & Malhi, Y. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat. Geosci. 6, 761–764 (2013).

    Article  CAS  Google Scholar 

  81. Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Svenning, J.-C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Lundgren, E. J et al. Functional traits - not nativeness - shape the effects of large mammalian herbivores on plant communities. Science https://doi.org/10.1126/science.adh2616 (2024).

  84. Lundgren, E. J. et al. Functional traits of the world’s late Quaternary large-bodied avian and mammalian herbivores. Sci. Data 8, 17 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Westgate, M. J. revtools: an R package to support article screening for evidence synthesis. Res. Syn. Meth. 10, 606–614 (2019).

    Article  Google Scholar 

  86. Eldridge, D. J., Ding, J. & Travers, S. K. Feral horse activity reduces environmental quality in ecosystems globally. Biol. Conserv. 241, 108367 (2020).

    Article  Google Scholar 

  87. Sitters, J., Kimuyu, D. M., Young, T. P., Claeys, P. & Olde Venterink, H. Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores. Nat. Sustain. 3, 360–366 (2020).

    Article  Google Scholar 

  88. Hessman, F. V. Figure_Calibration (Institut für Astrophysik, Georg-August-Universität-Göttingen, 2009).

  89. Baston, D. exactextractr: Fast Extraction from Raster Datasets using Polygons (CRAN, 2022).

  90. Hijmans, R. terra: Spatial Data Analysis (CRAN, 2023).

  91. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  92. Hedges, L. V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 6, 107–128 (1981).

  93. Durlak, J. A. How to select, calculate, and interpret effect sizes. J. Pediatr. Psychol. 34, 917–928 (2009).

    Article  PubMed  Google Scholar 

  94. Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 1988).

  95. Nakagawa, S. et al. Meta-analysis of variation: ecological and evolutionary applications and beyond. Methods Ecol. Evol. 6, 143–152 (2015).

    Article  Google Scholar 

  96. McGrath, S., Zhao, X., Steele, R. & Benedetti, A. estmeansd: Estimating the Sample Mean and Standard Deviation from Commonly Reported Quantiles in Meta-Analysis (CRAN, 2022).

  97. López-López, J. A., Marín-Martínez, F., Sánchez-Meca, J., Van den Noortgate, W. & Viechtbauer, W. Estimation of the predictive power of the model in mixed-effects meta-regression: a simulation study. Br. J. Math. Stat. Psychol. 67, 30–48 (2014).

    Article  PubMed  Google Scholar 

  98. Dhakal, C. P. Dealing with outliers and influential points while fitting regression. J. Inst. Sci. Technol. 22, 61–65 (2017).

    Article  Google Scholar 

  99. Cook, R. D. in International Encyclopedia of Statistical Science (ed. Lovric, M.) 301–302 (Springer, 2011).

  100. Sterne, J. A. C. & Egger, M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J. Clin. Epidemiol. 54, 1046–1055 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Sterne, J. A. C. & Egger, M. in Publication Bias in Meta-Analysis (eds Rothstein, H. R. et al.) 99–110 (John Wiley & Sons, 2005).

  102. Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).

    Article  Google Scholar 

  103. Trepel, J. & Lundgren, E. Data and supplementary files. Figshare https://doi.org/10.6084/m9.figshare.24234913.v2 (2023).

Download references

Acknowledgements

This work is a contribution to the Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by the Danish National Research Foundation (grant DNRF173 to J.-C.S.), the VILLUM Investigator project ‘Biodiversity Dynamics in a Changing World’ (BIOCHANGE), funded by VILLUM FONDEN (grant 16549 to J.-C.S.), the project ‘The Chemical Landscapes of Danish Rewilded Ecosystems’ funded by the Independent Research Fund Denmark’s Inge Lehmann Programme (grant case number 1131-00006B to E.l.R.), and the Independent Research Fund Denmark | Natural Sciences project MegaComplexity (grant 0135-00225B to J.-C.S.). J.A.K. was supported by the Carlsberg Foundation (grant CF20-0238). A.J.A. was supported by Horizon Europe Marie Skłodowska-Curie Actions Grant Agreement No. 101062339. Some of the computing for this project was performed on the GenomeDK cluster.

Author information

Authors and Affiliations

Authors

Contributions

J.T., E.J.L., E.l.R., A.J.A., J.-C.S. and J.A.K. conceptualized the project. J.T. and E.J.L. developed the methodology. J.T., E.J.L. and M.T. performed data analysis. J.T., E.J.L. and J.A.K. conducted investigations. J.T. and E.J.L. performed visualization. J.T., E.J.L. and J.-C.S. administered the project. E.l.R., E.J.L. and J.-C.S. mainly supervised the project. A.J.A. and J.K. co-supervised the project. J.T., E.l.R., J.A.K. and E.J.L. wrote the original draft. J.T., E.l.R., A.J.A., R.B., J.K., J.A.K., M.T., E.J.L. and J.-C.S. reviewed and edited the manuscript.

Corresponding authors

Correspondence to Jonas Trepel or Erick J. Lundgren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Robert Pringle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27 and Tables 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trepel, J., le Roux, E., Abraham, A.J. et al. Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity. Nat Ecol Evol 8, 705–716 (2024). https://doi.org/10.1038/s41559-024-02327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02327-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing