Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Integrating cryptic diversity into coral evolution, symbiosis and conservation

Abstract

Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including ‘cryptic lineages’—genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypothetical distributions of cryptic coral lineages.
Fig. 2: Hypothetical distributions of four cryptic coral lineages with several algal symbionts (Symbiodiniaceae) across an environmental gradient.

Similar content being viewed by others

References

  1. Mayo, S. J. & Monro, A. K. Cryptic Species: Morphological Stasis, Circumscription, and Hidden Diversity (Cambridge Univ. Press, 2022).

  2. Mayr, E., Linsley, E. G. & Usinger, R. L. Methods and Principles of Systematic Zoology (McGraw-Hill, 1953).

  3. Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).

    Article  PubMed  Google Scholar 

  4. Gijsbers, J. C. et al. Global phylogenomic assessment of Leptoseris and Agaricia reveals substantial undescribed diversity at mesophotic depths. BMC Biol. 21, 147 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Colton, M. A. et al. Coral conservation in a warming world must harness evolutionary adaptation. Nat. Ecol. Evol. 6, 1405–1407 (2022).

    Article  PubMed  Google Scholar 

  6. Epstein, N., Bak, R. P. M. & Rinkevich, B. Applying forest restoration principles to coral reef rehabilitation. Aquat. Conserv. Mar. Freshw. Ecosyst. 13, 387–395 (2003).

    Article  Google Scholar 

  7. Struck, T. H. et al. Finding Evolutionary Processes Hidden in Cryptic Species. Trends Ecol. Evol. 33, 153–163 (2018).

    Article  PubMed  Google Scholar 

  8. Bonito, V. E., Baird, A. H., Bridge, T., Cowman, P. F. & Fenner, D. Types, topotypes and vouchers are the key to progress in coral taxonomy: Comment on Wepfer et al. (2020). Mol. Phylogenet. Evol. 159, 107104 (2021).

    Article  PubMed  Google Scholar 

  9. Hobbs, J.-P. A. et al. Hybridisation and the evolution of coral reef biodiversity. Coral Reefs 41, 535–549 (2022).

    Article  Google Scholar 

  10. Quattrini, A. M. et al. A next generation approach to species delimitation reveals the role of hybridization in a cryptic species complex of corals. BMC Evol. Biol. 19, 116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vollmer, S. V. & Palumbi, S. R. Hybridization and the evolution of reef coral diversity. Science 296, 2023–2025 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Willis, B. L., Van Oppen, M. J. H., Miller, D. J., Vollmer, S. V. & Ayre, D. J. The role of hybridization in the evolution of reef corals. Annu. Rev. Ecol. Evol. Syst. 37, 489–517 (2006).

    Article  Google Scholar 

  13. Bongaerts, P. et al. Morphological stasis masks ecologically divergent coral species on tropical reefs. Curr. Biol. 31, 2286–2298 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Gómez‐Corrales, M. & Prada, C. Cryptic lineages respond differently to coral bleaching. Mol. Ecol. 29, 4265–4273 (2020).

    Article  PubMed  Google Scholar 

  15. Prada, C. & Hellberg, M. E. Speciation‐by‐depth on coral reefs: sympatric divergence with gene flow or cryptic transient isolation? J. Evol. Biol. 34, 128–137 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Rippe, J. P., Dixon, G., Fuller, Z. L., Liao, Y. & Matz, M. Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract. Mol. Ecol. 30, 3468–3484 (2021).

    Article  PubMed  Google Scholar 

  17. Johnston, E. C., Wyatt, A. S. J., Leichter, J. J. & Burgess, S. C. Niche differences in co-occurring cryptic coral species (Pocillopora spp.). Coral Reefs 41, 767–778 (2022).

    Article  Google Scholar 

  18. Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).

    Article  Google Scholar 

  19. Burgess, S. C., Johnston, E. C., Wyatt, A. S. J., Leichter, J. J. & Edmunds, P. J. Response diversity in corals: hidden differences in bleaching mortality among cryptic Pocillopora species. Ecology 102, e03324 (2021).

    Article  PubMed  Google Scholar 

  20. Rose, N. H. et al. Genomic analysis of distinct bleaching tolerances among cryptic coral species. Proc. R. Soc. B. 288, 20210678 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rivera, H. E. et al. Palau’s warmest reefs harbor thermally tolerant corals that thrive across different habitats. Commun. Biol. 5, 1394 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. 30, 4466–4480 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Aichelman, H. Exploring Coral Symbiosis Under Climate Change Stress Across Spatial and Temporal Scales. PhD dissertation, Boston Univ. (2023).

  24. Prada, C. et al. Cryptic diversity hides host and habitat specialization in a gorgonian–algal symbiosis. Mol. Ecol. 23, 3330–3340 (2014).

    Article  PubMed  Google Scholar 

  25. Palacio-Castro, A. M. et al. Increased dominance of heat-tolerant symbionts creates resilient coral reefs in near-term ocean warming. Proc. Natl Acad. Sci. USA 120, e2202388120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnston, E. C., Cunning, R. & Burgess, S. C. Cophylogeny and specificity between cryptic coral species (Pocillopora spp.) at Mo′orea and their symbionts (Symbiodiniaceae). Mol. Ecol. 31, 5368–5385 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).

    Google Scholar 

  28. Weis, V. M. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Knowlton, N. Sibling species in the sea. Annu. Rev. Ecol. Evol. Syst. 189, 189–216 (1993).

    Article  Google Scholar 

  30. Arrigoni, R., Berumen, M. L., Stolarski, J., Terraneo, T. I. & Benzoni, F. Uncovering hidden coral diversity: a new cryptic lobophylliid scleractinian from the Indian Ocean. Cladistics 35, 301–328 (2019).

    Article  PubMed  Google Scholar 

  31. Miller, K. J. & Benzie, J. A. H. No clear genetic distinction between morphological species within the coral genus Platygyra. Bull. Mar. Sci. 6, 907–917 (1997).

    Google Scholar 

  32. Fukami, H. et al. Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (order Scleractinia, class Anthozoa, phylum Cnidaria). PLoS ONE 3, e3222 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huang, D., Licuanan, W. Y., Baird, A. H. & Fukami, H. Cleaning up the ‘Bigmessidae’: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol. Biol. 11, 37 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van Oppen, M. J. H., Koolmees, E. M. & Veron, J. E. N. Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Mar. Biol. 144, 9–18 (2004).

    Article  Google Scholar 

  35. Cunha, R. L. et al. Rare coral under the genomic microscope: timing and relationships among Hawaiian Montipora. BMC Evol. Biol. 19, 153 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Forsman, Z. H. et al. Ecomorph or endangered coral? DNA and microstructure reveal Hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS ONE 5, e15021 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matias, A. M. A. et al. Cryptic diversity and spatial genetic variation in the coral Acropora tenuis and its endosymbionts across the Great Barrier Reef. Evol. Appl. 16, 293–310 (2023).

    Article  PubMed  Google Scholar 

  38. Ladner, J. T. & Palumbi, S. R. Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Mol. Ecol. 21, 2224–2238 (2012).

    Article  PubMed  Google Scholar 

  39. Boulay, J. N., Hellberg, M. E., Cortés, J. & Baums, I. B. Unrecognized coral species diversity masks differences in functional ecology. Proc. R. Soc. B. 281, 20131580 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Prada, C., Schizas, N. V. & Yoshioka, P. M. Phenotypic plasticity or speciation? A case from a clonal marine organism. BMC Evol. Biol. 8, 47 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fifer, J. E., Yasuda, N., Yamakita, T., Bove, C. B. & Davies, S. W. Genetic divergence and range expansion in a western North Pacific coral. Sci. Total Environ. 813, 152423 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Frade, P. R. et al. Semi-permeable species boundaries in the coral genus Madracis: introgression in a brooding coral system. Mol. Phylogenet. Evol. 57, 1072–1090 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Bongaerts, P. et al. Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS ONE 5, e10871 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Prada, C. & Hellberg, M. E. Long prereproductive selection and divergence by depth in a Caribbean candelabrum coral. Proc. Natl Acad. Sci. USA 110, 3961–3966 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Prada, C. & Hellberg, M. E. Strong natural selection on juveniles maintains a narrow adult hybrid zone in a broadcast spawner. Am. Nat. 184, 702–713 (2014).

    Article  PubMed  Google Scholar 

  46. Bongaerts, P. et al. Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol. Biol. 11, 303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Serrano, X. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Suzuki, G. et al. Genetic evidence of peripheral isolation and low diversity in marginal populations of the Acropora hyacinthus complex. Coral Reefs 35, 1419–1432 (2016).

    Article  Google Scholar 

  49. Nakabayashi, A. et al. The potential role of temperate Japanese regions as refugia for the coral Acropora hyacinthus in the face of climate change. Sci. Rep. 9, 1892 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schoepf, V. et al. Corals at the edge of environmental limits: a new conceptual framework to re-define marginal and extreme coral communities. Sci. Total Environ. 884, 163688 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Gold, Z. & Palumbi, S. R. Long-term growth rates and effects of bleaching in Acropora hyacinthus. Coral Reefs 37, 267–277 (2018).

    Article  Google Scholar 

  52. Knowlton, N., Weil, E., Weigt, L. A. & Guzmán, H. M. Sibling species in Montastraea annularis, coral bleaching, and the coral climate record. Science 255, 330–333 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Scucchia, F. et al. The role and risks of selective adaptation in extreme coral habitats. Nat. Commun. 14, 4475 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van Oppen, M. J. et al. Adaptation to reef habitats through selection on the coral animal and its associated microbiome. Mol. Ecol. 27, 2956–2971 (2018).

    Article  PubMed  Google Scholar 

  55. Iguchi, A. et al. RADseq population genomics confirms divergence across closely related species in blue coral (Heliopora coerulea). BMC Evol. Biol. 19, 187 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Smith, H., Epstein, H. & Torda, G. The molecular basis of differential morphology and bleaching thresholds in two morphs of the coral Pocillopora acuta. Sci. Rep. 7, 10066 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Starko, S. et al. Marine heatwaves threaten cryptic coral diversity and erode associations amongst coevolving partners. Sci. Adv. 9, eadf0954 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Forsman, Z. H., Ritson-Williams, R., Tisthammer, K. H., Knapp, I. S. S. & Toonen, R. J. Host–symbiont coevolution, cryptic structure, and bleaching susceptibility, in a coral species complex (Scleractinia; Poritidae). Sci. Rep. 10, 16995 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schoepf, V. et al. Thermally variable, macrotidal reef habitats promote rapid recovery from mass coral bleaching. Front. Mar. Sci. 7, 245 (2020).

    Article  Google Scholar 

  60. Dziedzic, K. E., Elder, H., Tavalire, H. & Meyer, E. Heritable variation in bleaching responses and its functional genomic basis in reef‐building corals (Orbicella faveolata). Mol. Ecol. 28, 2238–2253 (2019).

    Article  PubMed  Google Scholar 

  61. Traylor-Knowles, N., Rose, N. H., Sheets, E. A. & Palumbi, S. R. Early transcriptional responses during heat stress in the coral Acropora hyacinthus. Biol. Bull. 232, 91–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Conti-Jerpe, I. E. et al. Trophic strategy and bleaching resistance in reef-building corals. Sci. Adv. 6, eaaz5443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).

    Article  Google Scholar 

  65. Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).

    Article  PubMed  Google Scholar 

  66. Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Funct. Ecol. 23, 539–550 (2009).

    Article  Google Scholar 

  67. Scheufen, T., Krämer, W. E., Iglesias-Prieto, R. & Enríquez, S. Seasonal variation modulates coral sensibility to heat-stress and explains annual changes in coral productivity. Sci. Rep. 7, 4937 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Enríquez, S., Méndez, E. R., Hoegh-Guldberg, O. & Iglesias-Prieto, R. Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proc. R. Soc. B. 284, 20161667 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Budd, A. F. & Pandolfi, J. M. Evolutionary novelty is concentrated at the edge of coral species distributions. Science 328, 1558–1561 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Huang, D. et al. Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia): taxonomy of reef corals. Zool. J. Linn. Soc. 171, 277–355 (2014).

    Article  Google Scholar 

  71. Ramírez-Portilla, C. et al. Quantitative three-dimensional morphological analysis supports species discrimination in complex-shaped and taxonomically challenging corals. Front. Mar. Sci. 9, 955582 (2022).

    Article  Google Scholar 

  72. Ramírez-Portilla, C. et al. Solving the coral species delimitation conundrum. Syst. Biol. 71, 461–475 (2022).

    Article  PubMed  Google Scholar 

  73. Lachs, L. et al. No apparent trade-offs associated with heat tolerance in a reef-building coral. Commun. Biol. 6, 400 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Grupstra, C. G. B. et al. Thermal stress triggers productive viral infection of a key coral reef symbiont. ISME J. 16, 1430–1441 (2022).

  75. Van Oppen, M. J. H. & Medina, M. Coral evolutionary responses to microbial symbioses. Phil. Trans. R. Soc. B 375, 20190591 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2, 747–762 (2021).

    Article  Google Scholar 

  77. Howe-Kerr, L. I. et al. Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape. ISME Commun. 3, 27 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kwong, W. K., Del Campo, J., Mathur, V., Vermeij, M. J. A. & Keeling, P. J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103–107 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Change Biol. 21, 236–249 (2015).

    Article  Google Scholar 

  80. Manzello, D. P. et al. Role of host genetics and heat‐tolerant algal symbionts in sustaining populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean warming. Glob. Change Biol. 25, 1016–1031 (2019).

    Article  Google Scholar 

  81. Jones, A. & Berkelmans, R. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS ONE 5, e10437 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shore-Maggio, A., Callahan, S. M. & Aeby, G. S. Trade-offs in disease and bleaching susceptibility among two color morphs of the Hawaiian reef coral, Montipora capitata. Coral Reefs 37, 507–517 (2018).

    Article  Google Scholar 

  83. Rouzé, H., Lecellier, G., Saulnier, D. & Berteaux-Lecellier, V. Symbiodinium clades A and D differentially predispose Acropora cytherea to disease and Vibrio spp. colonization. Ecol. Evol. 6, 560–572 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).

    Article  PubMed  Google Scholar 

  87. Peixoto, R., Rosado, P., Leite, D., Rosado, A. S. & Bourne, D. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Davies, S. W. et al. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 11, e15023 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fujise, L. et al. Unlocking the phylogenetic diversity, primary habitats, and abundances of free-living Symbiodiniaceae on a coral reef. Mol. Ecol. 30, 343–360 (2021).

    Article  PubMed  Google Scholar 

  90. Grupstra, C. G. B., Rabbitt, K. M., Howe-Kerr, L. I. & Correa, A. M. S. Fish predation on corals promotes the dispersal of coral symbionts. Anim. Microbiome 3, 25 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Quigley, K. M., Bay, L. K. & Willis, B. L. Temperature and water quality-related patterns in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus Acropora. Front. Mar. Sci. 4, 401 (2017).

    Article  Google Scholar 

  92. Davies, S. W., Moreland, K. N., Wham, D. C., Kanke, M. R. & Matz, M. V. Cladocopium community divergence in two Acropora coral hosts across multiple spatial scales. Mol. Ecol. 29, 4559–4572 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 4921 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Buitrago‐López, C. et al. Disparate population and holobiont structure of pocilloporid corals across the Red Sea gradient demonstrate species‐specific evolutionary trajectories. Mol. Ecol. 32, 2151–2173 (2023).

  95. Pogoreutz, C. et al. Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. ISME J. 16, 1883–1895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maire, J. et al. Colocalization and potential interactions of Endozoicomonas and chlamydiae in microbial aggregates of the coral Pocillopora acuta. Sci. Adv. 9, eadg0773 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Bove, C. B., Ingersoll, M. V. & Davies, S. W. Help me, symbionts, you’re my only hope: approaches to accelerate our understanding of coral holobiont interactions. Integr. Comp. Biol. 62, 1756–1769 (2022).

    Article  PubMed  Google Scholar 

  98. Prata, K. E. et al. Deep connections: divergence histories with gene flow in mesophotic Agaricia corals. Mol. Ecol. 31, 2511–2527 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Richards, E. J., Servedio, M. R. & Martin, C. H. Searching for sympatric speciation in the genomic era. BioEssays 41, 1900047 (2019).

    Article  Google Scholar 

  100. Pinho, C. & Hey, J. Divergence with gene flow: models and data. Annu. Rev. Ecol. Evol. Syst. 41, 215–230 (2010).

    Article  Google Scholar 

  101. Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).

    Article  Google Scholar 

  102. Kulmuni, J. & Westram, A. M. Intrinsic incompatibilities evolving as a by-product of divergent ecological selection: considering them in empirical studies on divergence with gene flow. Mol. Ecol. 26, 3093–3103 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Veron, J. E. N. et al. Delineating the coral triangle. Galaxea J. Coral Reef. Stud. 11, 91–100 (2009).

    Article  Google Scholar 

  104. Richmond, R. H. in Life and Death of Coral Reefs (ed. Birkeland, C.) 175–197 (Chapman & Hall, 1997).

  105. Golbuu, Y., Gouezo, M., Kurihara, H., Rehm, L. & Wolanski, E. Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs 35, 909–918 (2016).

    Article  Google Scholar 

  106. Chan, W. Y., Peplow, L. M. & Van Oppen, M. J. H. Interspecific gamete compatibility and hybrid larval fitness in reef-building corals: implications for coral reef restoration. Sci. Rep. 9, 4757 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Fogarty, N. D., Vollmer, S. V. & Levitan, D. R. Weak prezygotic isolating mechanisms in threatened caribbean Acropora corals. PLoS ONE 7, e30486 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Swanson, W. J. & Vacquier, V. D. The abalone egg vitelline envelope receptor for sperm lysin is a giant multivalent molecule. Proc. Natl Acad. Sci. USA 94, 6724–6729 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vacquier, V. D. & Moy, G. W. Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. Proc. Natl Acad. Sci. USA 74, 2456–2460 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rosser, N. L. Asynchronous spawning in sympatric populations of a hard coral reveals cryptic species and ancient genetic lineages. Mol. Ecol. 24, 5006–5019 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Furukawa, M., Ohki, S., Kitanobo, S., Fukami, H. & Morita, M. Differences in spawning time drive cryptic speciation in the coral Acropora divaricata. Mar. Biol. 167, 163 (2020).

    Article  Google Scholar 

  112. Ohki, S., Kowalski, R. K., Kitanobo, S. & Morita, M. Changes in spawning time led to the speciation of the broadcast spawning corals Acropora digitifera and the cryptic species Acropora sp. 1 with similar gamete recognition systems. Coral Reefs 34, 1189–1198 (2015).

    Article  Google Scholar 

  113. Abe, M., Watanabe, T., Hayakawa, H. & Hidaka, M. Breeding experiments of hermatypic coral Galaxea fascicularis: partial reproductive isolation between colonies of different nematocyst types and enhancement of fertilization success by presence of parental colonies. Fish. Sci. 74, 1342–1344 (2008).

    Article  CAS  Google Scholar 

  114. Watanabe, T., Nishida, M., Watanabe, K., Wewengkang, D. S. & Hidaka, M. Polymorphism in nucleotide sequence of mitochondrial intergenic region in scleractinian coral (Galaxea fascicularis). Mar. Biotechnol. 7, 33–39 (2005).

    Article  CAS  Google Scholar 

  115. Levitan, D. R. et al. Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58, 308–323 (2004).

    PubMed  Google Scholar 

  116. Levitan, D. R., Fogarty, N. D., Jara, J., Lotterhos, K. E. & Knowlton, N. Genetic, spatial, and temporal components of precise spawning synchrony in reef building corals of the Montastraea annularis species complex. Evolution 65, 1254–1270 (2011).

    Article  PubMed  Google Scholar 

  117. Turelli, M. & Orr, H. A. Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154, 1663–1679 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu, C.-I. The genic view of the process of speciation. J. Evol. Biol. 14, 851–865 (2001).

    Article  Google Scholar 

  119. Wolf, J. B. W. & Ellegren, H. Making sense of genomic islands of differentiation in light of speciation. Nat. Rev. Genet. 18, 87–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Guerrero, R. F. & Hahn, M. W. Speciation as a sieve for ancestral polymorphism. Mol. Ecol. 26, 5362–5368 (2017).

    Article  PubMed  Google Scholar 

  121. Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).

    Article  PubMed  Google Scholar 

  122. Jouganous, J., Long, W., Ragsdale, A. P. & Gravel, S. Inferring the joint demographic history of multiple populations: beyond the diffusion approximation. Genetics 206, 1549–1567 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gutenkunst, R. N. dadi.CUDA: accelerating population genetics inference with graphics processing units. Mol. Biol. Evol. 38, 2177–2178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).

    Article  Google Scholar 

  125. Baum, J. K. et al. Transformation of coral communities subjected to an unprecedented heatwave is modulated by local disturbance. Sci. Adv. 9, eabq5615 (2023).

    Article  PubMed  Google Scholar 

  126. Voolstra, C. R. et al. Consensus guidelines for advancing coral holobiont genome and specimen voucher deposition. Front. Mar. Sci. 8, 701784 (2021).

    Article  Google Scholar 

  127. Bridge, T. C. L. et al. A tenuis relationship: traditional taxonomy obscures systematics and biogeography of the ‘Acropora tenuis’ (Scleractinia: Acroporidae) species complex. Zool. J. Linn. Soc., https://doi.org/10.1093/zoolinnean/zlad062 (2023).

  128. Scott, C. B. et al. Millennia‐old coral holobiont DNA provides insight into future adaptive trajectories. Mol. Ecol. 31, 4979–4990 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Donovan, M. K. et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc. Natl Acad. Sci. USA 117, 5351–5357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu, American Samoa. Front. Mar. Sci. 4, 434 (2018).

    Article  Google Scholar 

  132. van Woesik, R. et al. Climate-change refugia in the sheltered bays of Palau: analogs of future reefs. Ecol. Evol. 2, 2474–2484 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Fogarty, N. Caribbean acroporid coral hybrids are viable across life history stages. Mar. Ecol. Prog. Ser. 446, 145–159 (2012).

    Article  Google Scholar 

  135. Aguilar-Perera, A. & Hernández-Landa, R. C. Occurrence of large thickets of Acropora prolifera (Scleractinia: Acroporidae) in the southern Gulf of Mexico. Mar. Biodivers. 48, 2203–2205 (2018).

    Article  Google Scholar 

  136. Japaud, A., Fauvelot, C. & Bouchon, C. Unexpected high densities of the hybrid coral Acropora prolifera (Lamarck 1816) in Guadeloupe Island, Lesser Antilles. Coral Reefs 33, 593–593 (2014).

    Article  Google Scholar 

  137. Kalla, S. E., Queller, D. C., Lasagni, A. & Strassmann, J. E. Kin discrimination and possible cryptic species in the social amoeba Polysphondylium violaceum. BMC Evol. Biol. 11, 31 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Roca, A. L., Georgiadis, N., Pecon-Slattery, J. & O’Brien, S. J. Genetic evidence for two species of elephant in Africa. Science 293, 1473–1477 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Pfenninger, M. & Schwenk, K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol. 7, 121 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Pipithkul, S. et al. High clonality and geographically separated cryptic lineages in the threatened temperate coral, Acropora pruinosa. Front. Mar. Sci. 8, 668043 (2021).

    Article  Google Scholar 

  141. Rosser, N. L. et al. Phylogenomics provides new insight into evolutionary relationships and genealogical discordance in the reef-building coral genus Acropora. Proc. R. Soc. B 284, 20162182 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Rosser, N. L., Edyvane, K., Malina, A. C., Underwood, J. N. & Johnson, M. S. Geography and spawning season drive genetic divergence among populations of the hard coral Acropora tenuis from Indonesia and Western Australia. Coral Reefs 39, 989–999 (2020).

    Article  Google Scholar 

  143. Gilmour, J. P., Underwood, J. N., Howells, E. J., Gates, E. & Heyward, A. J. Biannual spawning and temporal reproductive isolation in Acropora corals. PLoS ONE 11, e0150916 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Suzuki, G. & Fukami, H. Evidence of genetic and reproductive isolation between two morphs of subtropical-dominant coral Acropora solitaryensis in the non-reef region of Japan. Zool. Sci. 29, 134–140 (2012).

    Article  Google Scholar 

  145. Nakajima, Y., Nishikawa, A., Iguchi, A. & Sakai, K. Regional genetic differentiation among northern high-latitude island populations of a broadcast-spawning coral. Coral Reefs 31, 1125–1133 (2012).

    Article  Google Scholar 

  146. Richards, Z. T., Berry, O. & van Oppen, M. J. H. Cryptic genetic divergence within threatened species of Acropora coral from the Indian and Pacific Oceans. Conserv. Genet. 17, 577–591 (2016).

    Article  Google Scholar 

  147. Zayasu, Y. et al. Genome‐wide SNP genotyping reveals hidden population structure of an acroporid species at a subtropical coral island: implications for coral restoration. Aquat. Conserv. 31, 2429–2439 (2021).

    Article  Google Scholar 

  148. Sheets, E. A., Warner, P. A. & Palumbi, S. R. Accurate population genetic measurements require cryptic species identification in corals. Coral Reefs 37, 549–563 (2018).

    Article  Google Scholar 

  149. Mitsuki, Y. et al. Distinct species hidden in the widely distributed coral Coelastrea aspera. Invertebr. Syst. 35, 876–891 (2021).

    Article  CAS  Google Scholar 

  150. Carlon, D. B. & Lippé, C. Estimation of mating systems in short and tall ecomorphs of the coral Favia fragum. Mol. Ecol. 20, 812–828 (2011).

    Article  PubMed  Google Scholar 

  151. Carlon, D. B. & Budd, A. F. Incipient speciation across a depth gradient in a scleractinian coral? Evolution 56, 2227–2242 (2002).

    PubMed  Google Scholar 

  152. Teschima, M. M., Zilberberg, C. & Nunes, F. L. D. Strong genetic differentiation demarks populations of Favia across biogeographic regions of the Atlantic Ocean. Coral Reefs 41, 523–534 (2022).

    Article  Google Scholar 

  153. Grinblat, M. et al. Biogeography, reproductive biology and phylogenetic divergence within the Fungiidae (mushroom corals). Mol. Phylogenet. Evol. 164, 107265 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Oku, Y. et al. Fungia fungites (Linnaeus, 1758) (Scleractinia, Fungiidae) is a species complex that conceals large phenotypic variation and a previously unrecognized genus. Contrib. Zool. 89, 188–209 (2020).

    Article  Google Scholar 

  155. Wepfer, P. H. et al. Evolutionary biogeography of the reef-building coral genus Galaxea across the Indo-Pacific Ocean. Mol. Phylogenet. Evol. 151, 106905 (2020).

    Article  PubMed  Google Scholar 

  156. Nakajima, Y., Zayasu, Y., Shinzato, C., Satoh, N. & Mitarai, S. Genetic differentiation and connectivity of morphological types of the broadcast‐spawning coral Galaxea fascicularis in the Nansei Islands, Japan. Ecol. Evol. 6, 1457–1469 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Nakajima, Y., Shinzato, C., Satoh, N. & Mitarai, S. Novel polymorphic microsatellite markers reveal genetic differentiation between two sympatric types of Galaxea fascicularis. PLoS ONE 10, e0130176 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bongaerts, P. et al. Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species. R. Soc. Open Sci. 2, 140297 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Frade, P. R., Bongaerts, P., Winkelhagen, A. J. S., Tonk, L. & Bak, R. P. M. In situ photobiology of corals over large depth ranges: a multivariate analysis on the roles of environment, host, and algal symbiont. Limnol. Oceanogr. 53, 2711–2723 (2008).

    Article  Google Scholar 

  160. Weil, E. & Knowlton, N. A multi-character analysis of the Caribbean coral Montastraea annularis (Ellis and Solander, 1786) and its two sibling species, M. faveolata (Ellis and Solander, 1786) and M. franksi (Gregory, 1895). Bull. Mar. Sci. 55, 151–175 (1994).

    Google Scholar 

  161. Feldman, B. et al. Distinct lineages and population genomic structure of the coral Pachyseris speciosa in the small equatorial reef system of Singapore. Coral Reefs 41, 575–585 (2022).

    Article  Google Scholar 

  162. Juszkiewicz, D. J. et al. Phylogeography of recent Plesiastrea (Scleractinia: Plesiastreidae) based on an integrated taxonomic approach. Mol. Phylogenet. Evol. 172, 107469 (2022).

    Article  PubMed  Google Scholar 

  163. Voolstra, C. R. et al. Disparate genetic divergence patterns in three corals across a pan-Pacific environmental gradient highlight species-specific adaptation. npj Biodivers. 2, 15 (2023).

    Article  Google Scholar 

  164. Oury, N., Gélin, P. & Magalon, H. Cryptic species and genetic connectivity among populations of the coral Pocillopora damicornis (Scleractinia) in the tropical southwestern Pacific. Mar. Biol. 167, 142 (2020).

    Article  CAS  Google Scholar 

  165. Pinzón, J. H. & Lajeunesse, T. C. Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol. Ecol. 20, 311–325 (2011).

    Article  PubMed  Google Scholar 

  166. Pinzón, J. H. et al. Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J. Biogeogr. 40, 1595–1608 (2013).

    Article  Google Scholar 

  167. Schmidt-Roach, S. et al. Assessing hidden species diversity in the coral Pocillopora damicornis from eastern Australia. Coral Reefs 32, 161–172 (2013).

    Article  Google Scholar 

  168. Gélin, P., Postaire, B., Fauvelot, C. & Magalon, H. Reevaluating species number, distribution and endemism of the coral genus Pocillopora Lamarck, 1816 using species delimitation methods and microsatellites. Mol. Phylogenet. Evol. 109, 430–446 (2017).

    Article  PubMed  Google Scholar 

  169. Souter, P. Hidden genetic diversity in a key model species of coral. Mar. Biol. 157, 875–885 (2010).

    Article  Google Scholar 

  170. Gélin, P., Fauvelot, C., Bigot, L., Baly, J. & Magalon, H. From population connectivity to the art of striping Russian dolls: the lessons from Pocillopora corals. Ecol. Evol. 8, 1411–1426 (2018).

    Article  PubMed  Google Scholar 

  171. Torda, G., Lundgren, P., Willis, B. L. & Van Oppen, M. J. H. Revisiting the connectivity puzzle of the common coral Pocillopora damicornis. Mol. Ecol. 22, 5805–5820 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Thomas, L. et al. Population genetic structure of the Pocillopora damicornis morphospecies along Ningaloo Reef, Western Australia. Mar. Ecol. Prog. Ser. 513, 111–119 (2014).

    Article  Google Scholar 

  173. Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 21619 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Schweinsberg, M., Tollrian, R. & Lampert, K. P. Genetic variation in the massive coral Porites lobata. Mar. Biol. 163, 242 (2016).

    Article  Google Scholar 

  175. Tisthammer, K. H., Forsman, Z. H., Toonen, R. J. & Richmond, R. H. Genetic structure is stronger across human-impacted habitats than among islands in the coral Porites lobata. PeerJ 8, e8550 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Afiq‐Rosli, L. et al. Barriers and corridors of gene flow in an urbanized tropical reef system. Evol. Appl. 14, 2502–2515 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Tisthammer, K. H. & Richmond, R. H. Corallite skeletal morphological variation in Hawaiian Porites lobata. Coral Reefs 37, 445–456 (2018).

    Article  Google Scholar 

  178. Camp, E. et al. Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions. Mar. Ecol. Prog. Ser. 625, 1–14 (2019).

    Article  CAS  Google Scholar 

  179. Stefani, F., Benzoni, F., Pichon, M., Cancelliere, C. & Galli, P. A multidisciplinary approach to the definition of species boundaries in branching species of the coral genus Psammocora (Cnidaria, Scleractinia). Zool. Scr. 37, 71–91 (2007).

    Article  Google Scholar 

  180. Underwood, J. N., Richards, Z. T., Miller, K. J., Puotinen, M. L. & Gilmour, J. P. Genetic signatures through space, time and multiple disturbances in a ubiquitous brooding coral. Mol. Ecol. 27, 1586–1602 (2018).

    Article  PubMed  Google Scholar 

  181. Warner, P. A., van Oppen, M. J. H. & Willis, B. L. Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity. Mol. Ecol. 24, 2993–3008 (2015).

    Article  PubMed  Google Scholar 

  182. Sinniger, F., Prasetia, R., Yorifuji, M., Bongaerts, P. & Harii, S. Seriatopora diversity preserved in upper mesophotic coral ecosystems in southern Japan. Front. Mar. Sci. 4, 155 (2017).

    Article  Google Scholar 

  183. Nakajima, Y. et al. Elucidating the multiple genetic lineages and population genetic structure of the brooding coral Seriatopora (Scleractinia: Pocilloporidae) in the Ryukyu Archipelago. Coral Reefs 36, 415–426 (2017).

    Article  Google Scholar 

  184. Stefani, F. et al. Comparison of morphological and genetic analyses reveals cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs 30, 1033–1049 (2011).

    Article  Google Scholar 

  185. Keshavmurthy, S. et al. DNA barcoding reveals the coral ‘laboratory-rat’, Stylophora pistillata encompasses multiple identities. Sci. Rep. 3, 1520 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Flot, J.-F. et al. Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization? BMC Ecol. 11, 22 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Taninaka, H. et al. Phylogeography of blue corals (genus Heliopora) across the Indo-West Pacific. Front. Mar. Sci. 8, 714662 (2021).

    Article  Google Scholar 

  188. Yasuda, N. et al. Genetic diversity, paraphyly and incomplete lineage sorting of mtDNA, ITS2 and microsatellite flanking region in closely related Heliopora species (Octocorallia). Mol. Phylogenet. Evol. 93, 161–171 (2015).

    Article  PubMed  Google Scholar 

  189. Taninaka, H. et al. Limited fine-scale larval dispersal of the threatened brooding corals Heliopora spp. as evidenced by population genetics and numerical simulation. Conserv. Genet. 20, 1449–1463 (2019).

    Article  CAS  Google Scholar 

  190. Villanueva, R. D. Cryptic speciation in the stony octocoral Heliopora coerulea: temporal reproductive isolation between two growth forms. Mar. Biodivers. 46, 503–507 (2016).

    Article  Google Scholar 

  191. Yasuda, N. et al. Genetic structure and cryptic speciation in the threatened reef-building coral Heliopora coerulea along Kuroshio Current. Bull. Mar. Sci. 90, 233–255 (2014).

    Article  Google Scholar 

  192. Ruiz-Ramos, D. V., Saunders, M., Fisher, C. R. & Baums, I. B. Home bodies and wanderers: sympatric lineages of the deep-sea black coral Leiopathes glaberrima. PLoS ONE 10, e0138989 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Quattrini, A. M. et al. Phylogeography of Paramuricea: the role of depth and water mass in the evolution and distribution of deep-sea corals. Front. Mar. Sci. 9, 849402 (2022).

    Article  Google Scholar 

  194. Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).

    Article  PubMed  Google Scholar 

  195. Coelho, M. A. G. et al. Not out of the Mediterranean: Atlantic populations of the gorgonian Paramuricea clavata are a separate sister species under further lineage diversification. Ecol. Evol. 13, e9740 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Pelosi, J. A. et al. Fine-scale morphological, genomic, reproductive, and symbiont differences delimit the Caribbean octocorals Plexaura homomalla and P. kükenthali. Coral Reefs 41, 635–653 (2022).

    Article  Google Scholar 

  197. Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).

    Article  PubMed  Google Scholar 

  198. Swift, H. F., Gómez Daglio, L. & Dawson, M. N. Three routes to crypsis: stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae). Mol. Phylogenet. Evol. 99, 103–115 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Huang, S., Roy, K., Valentine, J. W. & Jablonski, D. Convergence, divergence, and parallelism in marine biodiversity trends: integrating present-day and fossil data. Proc. Natl Acad. Sci. USA 112, 4903–4908 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Todd, P. A. Morphological plasticity in scleractinian corals. Biol. Rev. 83, 315–337 (2008).

    Article  PubMed  Google Scholar 

  201. Gault, J. A., Bentlage, B., Huang, D. & Kerr, A. M. Lineage-specific variation in the evolutionary stability of coral photosymbiosis. Sci. Adv. 7, eabh4243 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Kayal, E. et al. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol. Biol. 18, 68 (2018).

    Article  PubMed Central  Google Scholar 

  203. Budd, A. F., Romano, S. L., Smith, N. D. & Barbeitos, M. S. Rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data. Integr. Comp. Biol. 50, 411–427 (2010).

    Article  PubMed  Google Scholar 

  204. Hellberg, M. E. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol. Biol. 6, 24 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Veron, J. E. N. Corals of the World, vol 1 (Australian Institute of Marine Science & CRR Qld. Pty. Ltd., 2000).

  206. Johnston, E. C., Forsman, Z. H. & Toonen, R. J. A simple molecular technique for distinguishing species reveals frequent misidentification of Hawaiian corals in the genus Pocillopora. PeerJ 6, e4355 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Knowlton, N. Thresholds and multiple stable states in coral reef community dynamics. Am. Zool. 32, 674–682 (1992).

    Article  Google Scholar 

  208. Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl Acad. Sci. USA 112, 2076–2081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Quek, Z. B. R. & Huang, D. Application of phylogenomic tools to unravel anthozoan evolution. Coral Reefs 41, 475–495 (2022).

    Article  Google Scholar 

  210. Vollmer, S. V. & Palumbi, S. R. Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Mol. Ecol. 13, 2763–2772 (2004).

    Article  CAS  PubMed  Google Scholar 

  211. Arrigoni, R. et al. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications. Mol. Ecol. Resour. 17, 1054–1071 (2017).

    Article  CAS  PubMed  Google Scholar 

  212. Matz, M. V. Fantastic beasts and how to sequence them: ecological genomics for obscure model organisms. Trends Genet. 34, 121–132 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12, 246 (2011).

    Article  Google Scholar 

  214. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PloS Genet. 8, e1002967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Knowlton, N. & Leray, M. in Coral Reefs in the Anthropocene (ed. Birkeland, C.) 117–132 (Springer, 2015).

  218. Li, Z., Löytynoja, A., Fraimout, A. & Merilä, J. Effects of marker type and filtering criteria on QSTFST comparisons. R. Soc. Open Sci. 6, 190666 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Truett, G. E. et al. Preparation of PCR-hotquality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). BioTechniques 29, 52–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  220. Leliaert, F. et al. DNA-based species delimitation in algae. Eur. J. Phycol. 49, 179–196 (2014).

    Article  Google Scholar 

  221. De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56, 879–886 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Kitchen for discussions about coral hybrid fertility and Davies lab members for thoughtful feedback. This study was made possible through US National Science Foundation awards to S.W.D. (OCE-2048589), K.S.M.-K. (OCE-2048678) and C.P. (OIA 2032919), and a NOAA award to C.P. (NA22OAR4050072), as well as Boston University and University of Rhode Island start-up funds to S.W.D. and C.P., respectively.

Author information

Authors and Affiliations

Authors

Contributions

C.G.B.G. and S.W.D. conceptualized the manuscript. C.G.B.G. and H.E.A conducted the literature analysis with help from all authors. C.G.B.G., M.G.-C., J.E.F., H.E.A., K.S.M.-K., C.P. and S.W.D. all contributed to writing and editing.

Corresponding authors

Correspondence to Carsten G. B. Grupstra or Sarah W. Davies.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

Summary of findings from articles included in the literature analysis and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grupstra, C.G.B., Gómez-Corrales, M., Fifer, J.E. et al. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 8, 622–636 (2024). https://doi.org/10.1038/s41559-023-02319-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02319-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing