Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction network structure explains species’ temporal persistence in empirical plant–pollinator communities

Abstract

Despite clear evidence that some pollinator populations are declining, our ability to predict pollinator communities prone to collapse or species at risk of local extinction is remarkably poor. Here, we develop a model grounded in the structuralist approach that allows us to draw sound predictions regarding the temporal persistence of species in mutualistic networks. Using high-resolution data from a six-year study following 12 independent plant–pollinator communities, we confirm that pollinator species with more persistent populations in the field are theoretically predicted to tolerate a larger range of environmental changes. Persistent communities are not necessarily more diverse, but are generally located in larger habitat patches, and present a distinctive combination of generalist and specialist species resulting in a more nested structure, as predicted by previous theoretical work. Hence, pollinator interactions directly inform about their ability to persist, opening the door to use theoretically informed models to predict species’ fate within the ongoing global change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Species’ persistence probability in model communities.
Fig. 2: Theoretical expectation versus empirical values.
Fig. 3: Predictors of temporal stability.

Similar content being viewed by others

Data availability

A dataset of species interaction and abundances can be accessed via Zenodo52. Source data are provided with this paper.

Code availability

The code used in this study can be downloaded from Zenodo52.

References

  1. Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).

    ADS  Google Scholar 

  2. Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).

    ADS  CAS  PubMed  Google Scholar 

  3. Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    PubMed  Google Scholar 

  4. Winfree, R., Bartomeus, I. & Cariveau, D. P. Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst. 42, 1–22 (2011).

    Google Scholar 

  5. Dicks, L. V. et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 5, 1453–1461 (2021).

    PubMed  Google Scholar 

  6. The Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services (IPBES, 2016).

  7. Dietze, M. & Lynch, H. Forecasting a bright future for ecology. Front. Ecol. Environ. 17, 3 (2019).

    Google Scholar 

  8. Grimm, V., Schmidt, E. & Wissel, C. On the application of stability concepts in ecology. Ecol. Modell. 63, 143–161 (1992).

    Google Scholar 

  9. Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    ADS  CAS  PubMed  Google Scholar 

  10. Domínguez-García, V. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).

    PubMed  Google Scholar 

  11. Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).

    PubMed  Google Scholar 

  12. Meerbeek, K. V., Jucker, T. & Svenning, J.-C. Unifying the concepts of stability and resilience in ecology. J. Ecol. 109, 3114–3132 (2021).

    Google Scholar 

  13. Domínguez-García, V., Dakos, V. & Kéfi, S. Unveiling dimensions of stability in complex ecological networks. Proc. Natl Acad. Sci. USA 116, 25714–25720 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  14. Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).

    PubMed  Google Scholar 

  15. Solé, R. V. & Valls, J. On structural stability and chaos in biological systems. J. Theor. Biol. 155, 87–102 (1992).

    ADS  Google Scholar 

  16. Medeiros, L. P., Boege, K., del Val, E., Zaldívar-Riverón, A. & Saavedra, S. Observed ecological communities are formed by species combinations that are among the most likely to persist under changing environments. Am. Nat. 197, E17–E29 (2021).

    PubMed  Google Scholar 

  17. Godoy, O., Bartomeus, I., Rohr, R. P. & Saavedra, S. Towards the integration of niche and network theories. Trends Ecol. Evol. 33, 287–300 (2018).

    PubMed  Google Scholar 

  18. Song, C., Rohr, R. P. & Saavedra, S. A guideline to study the feasibility domain of multi-trophic and changing ecological communities. J. Theor. Biol. 450, 30–36 (2018).

    ADS  MathSciNet  PubMed  Google Scholar 

  19. Song, C., Rohr, R. P. & Saavedra, S. Why are some plant–pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).

    PubMed  Google Scholar 

  20. Saavedra, S., Medeiros, L. P. & AlAdwani, M. Structural forecasting of species persistence under changing environments. Ecol. Lett. 23, 1511–1521 (2020).

    PubMed  Google Scholar 

  21. Tabi, A., Petchey, O. L. & Pennekamp, F. Warming reduces the effects of enrichment on stability and functioning across levels of organisation in an aquatic microbial ecosystem. Ecol. Lett. 22, 1061–1071 (2019).

    PubMed  Google Scholar 

  22. Bartomeus, I., Saavedra, S., Rohr, R. P. & Godoy, O. Experimental evidence of the importance of multitrophic structure for species persistence. Proc. Natl Acad. Sci. USA 118, e2023872118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Allen-Perkins, A., García-Callejas, D., Bartomeus, I. & Godoy, O. Structural asymmetry in biotic interactions as a tool to understand and predict ecological persistence. Ecol. Lett. 26, 1647–1662 (2023).

    PubMed  Google Scholar 

  24. Chacoff, N. P. et al. Evaluating sampling completeness in a desert plant–pollinator network. J. Anim. Ecol. 81, 190–200 (2011).

    PubMed  Google Scholar 

  25. Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant–pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).

    PubMed  Google Scholar 

  26. Peralta, G. et al. Trait matching and phenological overlap increase the spatio-temporal stability and functionality of plant–pollinator interactions. Ecol. Lett. 23, 1107–1116 (2020).

    PubMed  Google Scholar 

  27. Gaiarsa, M. P., Kremen, C. & Ponisio, L. C. Pollinator interaction flexibility across scales affects patch colonization and occupancy. Nat. Ecol. Evol. 5, 787–793 (2021).

    PubMed  Google Scholar 

  28. Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

    ADS  CAS  PubMed  Google Scholar 

  29. Saavedra, S., Rohr, R. P., Olesen, J. M. & Bascompte, J. Nested species interactions promote feasibility over stability during the assembly of a pollinator community. Ecol. Evol. 6, 997–1007 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. Blanchard, G. & Munoz, F. Revisiting extinction debt through the lens of multitrophic networks and meta-ecosystems. Oikos (2022).

  31. Gravel, D., Guichard, F., Loreau, M. & Mouquet, N. Source and sink dynamics in meta-ecosystems. Ecology 91, 2172–2184 (2010).

    PubMed  Google Scholar 

  32. García-Callejas, D., Bartomeus, I. & Godoy, O. The spatial configuration of biotic interactions shapes coexistence-area relationships in an annual plant community. Nat. Commun. 12, 6192 (2021).

  33. Vázquez, D. P. et al. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120–1127 (2007).

    ADS  Google Scholar 

  34. Olito, C. & Fox, J. W. Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions. Oikos 124, 428–436 (2014).

    ADS  Google Scholar 

  35. Taylor, S. J. S., Evans, B. S., White, E. P. & Hurlbert, A. H. The prevalence and impact of transient species in ecological communities. Ecology 99, 1825–1835 (2018).

    Google Scholar 

  36. Clark, T. & Luis, A. D. Nonlinear population dynamics are ubiquitous in animals. Nat. Ecol. Evol. 4, 75–81 (2020).

    CAS  PubMed  Google Scholar 

  37. Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    ADS  CAS  PubMed  Google Scholar 

  38. Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1995).

    Google Scholar 

  39. Gross, K. et al. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).

    PubMed  Google Scholar 

  40. Lázaro, A., Gómez-Martínez, C., González-Estévez, M. A. & Hidalgo, M. Portfolio effect and asynchrony as drivers of stability in plant–pollinator communities along a gradient of landscape heterogeneity. Ecography 3, e06112 (2022).

    Google Scholar 

  41. Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Potts, S. et al. Proposal for an EU Pollinator Monitoring Scheme (Publications Office of the European Union, 2020).

  43. Woodard, S. H. et al. Towards a U.S. national program for monitoring native bees. Biol. Conserv. 252, 108821 (2020).

    Google Scholar 

  44. Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kendall, L. K. et al. The potential and realized foraging movements of bees are differentially determined by body size and sociality. Ecology 103, e3809 (2022).

    PubMed  Google Scholar 

  46. Reckling, M. et al. Methods of yield stability analysis in long-term field experiments. A review. Agron. Sustain. Dev. 41, 27 (2021).

    Google Scholar 

  47. Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Google Scholar 

  48. Cenci, S. & Saavedra, S. Structural stability of nonlinear population dynamics. Phys. Rev. E 97, 012401 (2018).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  49. García-Callejas, D. et al. Non-random interactions within and across guilds shape the potential to coexist in multi-trophic ecological communities. Ecol. Lett. 26, 831–842 (2023).

    PubMed  Google Scholar 

  50. Jonhson, S., Domínguez-García, V. & Muñoz, M. A. Factors determining nestedness in complex networks. PLoS ONE 8, e74025 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  51. Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).

    Google Scholar 

  52. Domínguez-García, V., Molina, F. P., Godoy, O. & Bartomeus, I. Data and code corresponding to the article “Interaction network structure explains species temporal persistence in empirical plant–pollinator communities”. Zenodo https://doi.org/10.5281/zenodo.10083504 (2023).

Download references

Acknowledgements

We thank taxonomists L. O. Aguado and T. Wood. This research was funded through the 2017–2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, and with the funding organisations AEI, NWO, ECCyT and NSF to I.B. and V.D.-G. This project has received funding from the European Union’s Horizon 2021 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101064340 to V.D.-G., TASTE Project (PID2021-127607OB-I00) to O.G, I.B. and V.D.-G., and BeeFUN project (PCIG 14-GA-2013-631653) to I.B.

Author information

Authors and Affiliations

Authors

Contributions

V.D.-G., O.G. and I.B. designed research; F.P.M. and I.B. did fieldwork and F.P.M. identified species; V.D.-G. developed code and analysed data; V.D.-G. and I.B. performed research; and V.D.-G., O.G. and I.B. wrote the paper.

Corresponding author

Correspondence to Virginia Domínguez-Garcia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Nico Bluethgen, Marília Palumbo Gaiarsa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Supplementary results and methods text, and Supplementary Tables 1 and 2.

Reporting Summary

Peer Review File

Source data

Source Data Figs. 2 and 3

Dataset of plant–pollinator interactions at each site and dataset of pollinators’ yearly abundance at each site.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Garcia, V., Molina, F.P., Godoy, O. et al. Interaction network structure explains species’ temporal persistence in empirical plant–pollinator communities. Nat Ecol Evol 8, 423–429 (2024). https://doi.org/10.1038/s41559-023-02314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02314-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing