Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Invading plants remain undetected in a lag phase while they explore suitable climates

Abstract

Successful alien species may experience a period of quiescence, known as the lag phase, before becoming invasive and widespread. The existence of lags introduces severe uncertainty in risk analyses of aliens as the present state of species is a poor predictor of future distributions, invasion success and impact. Predicting a species’ ability to invade and pose negative impacts requires a quantitative understanding of the commonality and magnitude of lags, environmental factors and mechanisms likely to terminate lag. Using herbarium and climate data, we analysed over 5,700 time series (species × regions) in 3,505 naturalized plant species from nine regions in temperate and tropical climates to quantify lags and test whether there have been shifts in the species’ climatic space during the transition from the lag phase to the expansion phase. Lags were identified in 35% of the assessed invasion events. We detected phylogenetic signals for lag phases in temperate climate regions and that annual self-fertilizing species were less likely to experience lags. Where lags existed, they had an average length of 40 years and a maximum of 320 years. Lengthy lags (>100 years) were more likely to occur in perennial plants and less frequent in self-pollinating species. For 98% of the species with a lag phase, the climate spaces sampled during the lag period differed from those in the expansion phase based on the assessment of centroid shifts or degree of climate space overlap. Our results highlight the importance of functional traits for the onset of the expansion phase and suggest that climate discovery may play a role in terminating the lag phase. However, other possibilities, such as sampling issues and climate niche shifts, cannot be ruled out.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential scenarios for differences between the climate envelopes of lag and post-lag phases.
Fig. 2: Biphasic temporal trends.
Fig. 3: The comparison of lag and post-lag periods for climate variables identified as the most influential in causing a climate niche shift between the two invasion phases based on multivariate analysis.
Fig. 4: Probability and length of lag phase.

Similar content being viewed by others

Data availability

For Australia, a list of naturalized alien plants was acquired from the compendium of the introduced flora of Australia65 and the corresponding occurrence records were extracted from Australia’s Virtual Herbarium (https://www.ala.org.au)67. New Zealand’s data were obtained from literature41,47,68. The GloNAF database is available in the literature69,101 and was queried to extract species lists for the remaining six regions. Georeferenced occurrence records were extracted from the Global Biodiversity Informatics Facility (https://www.gbif.org)70. Trait data were extracted from TRYDB (https://www.try-db.org). Climate data were downloaded from the second version of the WorldClim dataset (https://www.worldclim.org/data/worldclim21.html). All data are available online and in the literature.

The minimum dataset comprises the naturalized species lists sourced from the GloNaf database, the compendium of the introduced flora of Australia65 and previous studies41,47 and is available under the CC BY 4.0 licence (https://doi.org/10.26188/24782898).

Code availability

The analysis has been implemented using existing packages referenced in the text. Implementation scripts are available on request.

References

  1. Pyšek, P. & Richardson, D. M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 35, 25–55 (2010).

    Article  Google Scholar 

  2. Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    Article  PubMed  Google Scholar 

  3. Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).

    Article  Google Scholar 

  4. Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).

    Article  Google Scholar 

  5. Kowarik, I. in Plant Invasions: General Aspects and Special Problems, (eds Pysek, P. et al.) 15–38 (SPB Academic Publishing, Amsterdam, 1995).

  6. Hawks, J. Lag times of biological invasions. John Hawks Weblog http://johnhawks.net/weblog/topics/evolution/invasive/lag-time-invasive-species-2010.html (2010).

  7. Crooks, J. A. Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12, 316–329 (2005).

    Article  Google Scholar 

  8. Pysek, P. & Prach, K. Plant invasions and the role of riparian habitats: a comparison of four species alien to Central Europe. J. Biogeogr. 20, 413–420 (1993).

    Article  Google Scholar 

  9. Cunningham, D. C., Woldendorp, G., Burgess, M. B. & Barry, S. C. Prioritising Sleeper Weeds for Eradication: Selection of Species Based on Potential Impacts on Agriculture and Feasibility of Eradication (Bureau of Rural Sciences, 2003).

  10. Simberloff, D. Non-natives: 141 scientists object. Nature 475, 36 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Seabloom, E. W. et al. Human impacts, plant invasion, and imperiled plant species in California. Ecol. Appl. 16, 1338–1350 (2006).

    Article  PubMed  Google Scholar 

  12. Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018).

    Article  Google Scholar 

  14. Duncan, R. P. Time lags and the invasion debt in plant naturalisations. Ecol. Lett. 24, 1363–1374 (2021).

    Article  PubMed  Google Scholar 

  15. Pyšek, P. & Richardson, D. M. The biogeography of naturalization in alien plants. J. Biogeogr. 33, 2040–2050 (2006).

    Article  Google Scholar 

  16. Milbau, A. & Stout, J. C. Factors associated with alien plants transitioning from casual, to naturalized, to invasive. Conserv. Biol. 22, 308–317 (2008).

    Article  PubMed  Google Scholar 

  17. Marsico, T. D. et al. Underutilized resources for studying the evolution of invasive species during their introduction, establishment, and lag phases. Evol. Appl. 3, 203–219 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lososová, Z. et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786–794 (2015).

    Article  Google Scholar 

  19. Colautti, R. I. & Lau, J. A. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 24, 1999–2017 (2015).

    Article  PubMed  Google Scholar 

  20. Wangen, S. R. & Webster, C. R. Potential for multiple lag phases during biotic invasions: reconstructing an invasion of the exotic tree Acer platanoides: lag phases and biotic invasions. J. Appl. Ecol. 43, 258–268 (2006).

    Article  Google Scholar 

  21. Colautti, R. I. & Barrett, S. C. H. Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342, 364–366 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Chapman, D. S., Scalone, R., Štefanić, E. & Bullock, J. M. Mechanistic species distribution modeling reveals a niche shift during invasion. Ecology 98, 1671–1680 (2017).

    Article  PubMed  Google Scholar 

  23. Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).

    Article  PubMed  Google Scholar 

  24. Meza Torres, E. I., Cerne, B., Ulke, A. G. & Morbelli, M. A. Distribution of Ophioglossum reticulatum L. in South America. A case of long-distance jump dispersal? Int. J. Biometeorol. 59, 137–150 (2014).

    Article  PubMed  Google Scholar 

  25. Rödder, D. Human footprint, facilitated jump dispersal, and the potential distribution of the invasive Eleutherodactylus johnstonei Barbour 1914 (Anura Eleutherodactylidae). Trop. Zool. 22, 205–217 (2009).

    Google Scholar 

  26. Geerts, S. et al. The absence of fire can cause a lag phase: The invasion dynamics of Banksia ericifolia (Proteaceae). Austral Ecol. 38, 931–941 (2013).

    Article  Google Scholar 

  27. McClaran, M. P. & Anable, M. E. Spread of introduced Lehmann lovegrass along a grazing intensity gradient. J. Appl. Ecol. 29, 92–98 (1992).

    Article  Google Scholar 

  28. Dawson, W., Burslem, D. F. R. P. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665 (2009).

    Article  Google Scholar 

  29. Pyšek, P. et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203–274 (2017).

    Article  Google Scholar 

  30. Van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J. M. & Fischer, M. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness: comparisons on determinants of invasiveness. Ecol. Lett. 13, 947–958 (2010).

    Article  PubMed  Google Scholar 

  31. Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).

    Article  PubMed  Google Scholar 

  32. Peterson, A. T. et al. Ecological Niches and Geographic Distributions (MPB-49) (Princeton Univ. Press, 2011).

  33. Soberón, J. M. Niche and area of distribution modeling: a population ecology perspective. Ecography 33, 159–167 (2010).

    Article  ADS  Google Scholar 

  34. Moore, D. A., Overton, M. W., Chebel, R. C., Truscott, M. L. & BonDurant, R. H. Evaluation of factors that affect embryonic loss in dairy cattle. J. Am. Vet. Med. Assoc. 226, 1112–1118 (2005).

    Article  PubMed  Google Scholar 

  35. Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).

    Article  PubMed  Google Scholar 

  36. Stralberg, D. et al. Re-shuffling of species with climate disruption: a no-analog future for California birds? PLoS ONE 4, e6825 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Richardson, D. M. & Pyšek, P. Naturalization of introduced plants: ecological drivers of biogeographical patterns. N. Phytol. 196, 383–396 (2012).

    Article  Google Scholar 

  40. Keitt, T. H., Lewis, M. A. & Holt, R. D. Allee effects, invasion pinning, and species’ borders. Am. Nat. 157, 203–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Hyndman, R. J., Mesgaran, M. B. & Cousens, R. D. Statistical issues with using herbarium data for the estimation of invasion lag-phases. Biol. Invasions 17, 3371–3381 (2015).

    Article  Google Scholar 

  42. Mesgaran, M. B., Cousens, R. D. & Webber, B. L. Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Divers. Distrib. 20, 1147–1159 (2014).

    Article  Google Scholar 

  43. Gallagher, R. V., Randall, R. P. & Leishman, M. R. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. https://doi.org/10.1111/cobi.12399 (2014).

  44. Larkin, D. J. Lengths and correlates of lag phases in upper-Midwest plant invasions. Biol. Invasions 14, 827–838 (2012).

    Article  Google Scholar 

  45. Moodley, D., Geerts, S., Richardson, D. M. & Wilson, J. R. U. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS ONE 8, e75078 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Godoy, O., Valladares, F. & Castro-Díez, P. The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. N. Phytol. 195, 912–922 (2012).

    Article  Google Scholar 

  47. Aikio, S., Duncan, R. P. & Hulme, P. E. Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119, 370–378 (2010).

    Article  ADS  Google Scholar 

  48. Daehler, C. C. Short lag times for invasive tropical plants: evidence from experimental plantings in Hawai’i. PLoS ONE 4, e4462 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  49. Hewitt, J. E., Norkko, J., Kauppi, L., Villnäs, A. & Norkko, A. Species and functional trait turnover in response to broad‐scale change and an invasive species. Ecosphere 7, e01289 (2016).

    Article  Google Scholar 

  50. Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in Mediterranean-climate ecosystems. Ecology 97, 75–83 (2016).

    Article  PubMed  Google Scholar 

  51. Küster, E. C., Kühn, I., Bruelheide, H. & Klotz, S. Trait interactions help explain plant invasion success in the German flora. J. Ecol. 96, 860–868 (2008).

    Article  Google Scholar 

  52. Moles, A. T., Gruber, M. A. M. & Bonser, S. P. A new framework for predicting invasive plant species. J. Ecol. 96, 13–17 (2007).

    Article  Google Scholar 

  53. Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).

    PubMed  Google Scholar 

  54. Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Kriticos, D. J. et al. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3, 53–64 (2012).

    Article  Google Scholar 

  56. Pyšek, P., Jarošík, V., Pergl, J. & Wild, J. Colonization of high altitudes by alien plants over the last two centuries. Proc. Natl Acad. Sci. USA 108, 439–440 (2011).

    Article  ADS  PubMed  Google Scholar 

  57. Walther, G.-R. et al. Alien species in a warmer world: risks and opportunities. Trends Ecol. Evol. 24, 686–693 (2009).

    Article  PubMed  Google Scholar 

  58. Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. W. & Maywald, G. F. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40, 111–124 (2003).

    Article  Google Scholar 

  59. Zachariah Atwater, D. & Barney, J. N. Climatic niche shifts in 815 introduced plant species affect their predicted distributions. Glob. Ecol. Biogeogr. 30, 1671–1684 (2021).

    Article  Google Scholar 

  60. Beaumont, L. Evidence for climate niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790–799 (2010).

    Article  Google Scholar 

  61. Merow, C., Bois, S. T., Allen, J. M., Xie, Y. & Silander, J. A. Jr. Climate change both facilitates and inhibits invasive plant ranges in New England. Proc. Natl Acad. Sci. USA 114, E3276–E3284 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ehler, L. E. Invasion biology and biological control. Biol. Control 13, 127–133 (1998).

    Article  Google Scholar 

  63. Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmánek, M. Plant invasions—the role of mutualisms. Biol. Rev. Camb. Philos. Soc. 75, 65–93 (2000).

    CAS  PubMed  Google Scholar 

  64. Arim, M., Abades, S. R., Neill, P. E., Lima, M. & Marquet, P. A. Spread dynamics of invasive species. Proc. Natl Acad. Sci. USA 103, 374–378 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Randall, R. P. The Introduced Flora of Australia and Its Weed Status (2007) (CRC for Australian Weed Management Department of Agriculture and Food, Western Australia, accessed May 2016); https://www.une.edu.au/__data/assets/pdf_file/0019/52372/2007.-The-introduced-flora-of-Australia-and-its-weed-status.pdf

  66. Dodd, A. J., Burgman, M. A., McCarthy, M. A. & Ainsworth, N. The changing patterns of plant naturalization in Australia. Divers. Distrib. 21, 1038–1050 (2015).

    Article  Google Scholar 

  67. Council of Heads of Australasian Herbaria (The Australasian Virtual Herbarium, accessed 2016); https://avh.chah.org.au/

  68. New Zealand National Herbarium Network (The New Zealand Virtual Herbarium, accessed 2016); www.virtualherbarium.org.nz

  69. van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).

    Article  ADS  PubMed  Google Scholar 

  70. GBIF Secretariat (The Global Biodiversity Information Facility, accessed 2019); https://www.gbif.org

  71. Delisle, F., Lavoie, C., Jean, M. & Lachance, D. Reconstructing the spread of invasive plants: taking into account biases associated with herbarium specimens: invasive plants and herbarium specimens. J. Biogeogr. 30, 1033–1042 (2003).

    Article  Google Scholar 

  72. Pyšek, P., Sádlo, J., Mandák, B. & Jarosík, V. Czech alien flora and the historical pattern of its formation: what came first to Central Europe? Oecologia 135, 122–130 (2003).

    Article  ADS  PubMed  Google Scholar 

  73. Williamson, M., Pyšek, P., Jarošík, V. & Prach, K. On the rates and patterns of spread of alien plants in the Czech Republic, Britain, and Ireland. Ecoscience 12, 424–433 (2005).

    Article  Google Scholar 

  74. Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).

    Article  ADS  PubMed  Google Scholar 

  75. Parr, C. S. et al. The Encyclopedia of Life v2: providing global access to knowledge about life on Earth. Biodivers. Data J. 2, e1079 (2014).

    Article  Google Scholar 

  76. Klotz, S., Kühn, I. & Durka, W. BIOFLOR. Eine Datenbank mit Biologischökologischen merkmalen zur Flora von Deutschland. (Bundesamt für Naturschutz, Bonn, 2002).

  77. Fitter, A. H. & Peat, H. J. The ecological flora database. J. Ecol. 82, 415–425 (1994).

    Article  Google Scholar 

  78. National Plant Data Team PLANTS Database 2006 (USDA, accessed June 2016); http://plants.usda.gov

  79. Hojsgaard, D., Klatt, S., Baier, R., Carman, J. G. & Hörandl, E. Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. CRC Crit. Rev. Plant Sci. 33, 414–427 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Barney, J. N. North American history of two invasive plant species: phytogeographic distribution, dispersal vectors, and multiple introductions. Biol. Invasions 8, 703–717 (2006).

    Article  Google Scholar 

  81. Mesgaran, M. B. et al. Importance of distribution function selection for hydrothermal time models of seed germination. Weed Res. 53, 89–101 (2013).

    Article  Google Scholar 

  82. Haque, M. M., Nipperess, D., Baumgartner, J. & Beaumont, L. J. A journey through time: exploring temporal patterns amongst digitized plant specimens from Australia. Syst. Biodivers. 16, 604–613 (2018).

    Article  Google Scholar 

  83. Cousens, R. & Mortimer, M. Dynamics of weed populations 346 (Cambridge Univ. Press, 1995); https://doi.org/10.1017/CBO9780511608629

  84. Dodd, A. J., McCarthy, M. A., Ainsworth, N. & Burgman, M. A. Identifying hotspots of alien plant naturalisation in Australia: approaches and predictions. Biol. Invasions 18, 631–645 (2016).

    Article  Google Scholar 

  85. Mahalanobis, P. C. On the generalised distance in statistics. Proc. Natl Acad. Sci. India 2, 49–55 (1936).

    Google Scholar 

  86. R Core Team R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2019).

  87. MATLAB v.7.10.0 (R2020a) (MathWorks, 2020).

  88. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  89. Webber, B. L. et al. Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models: modelling Australian acacias. Divers. Distrib. 17, 978–1000 (2011).

    Article  Google Scholar 

  90. Nuñez, M. A. & Medley, K. A. Pine invasions: climate predicts invasion success; something else predicts failure. Divers. Distrib. 17, 703–713 (2011).

    Article  Google Scholar 

  91. Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 12, 2272–2281 (2006).

    Article  ADS  Google Scholar 

  92. Parravicini, V., Azzurro, E., Kulbicki, M. & Belmaker, J. Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecol. Lett. 18, 246–253 (2015).

    Article  PubMed  Google Scholar 

  93. Gallagher, R. V., Beaumont, L. J., Hughes, L. & Leishman, M. R. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790–799 (2010).

    Article  Google Scholar 

  94. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).

    Article  PubMed  Google Scholar 

  95. Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article  Google Scholar 

  96. Chamberlain S. brranching: Fetch 'Phylogenies' from Many Sources. (R package, 2023).

  97. Garland, T. Jr & Ives, A. R. Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155, 346–364 (2000).

    Article  PubMed  Google Scholar 

  98. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Cadotte, M. W., Hamilton, M. A. & Murray, B. R. Phylogenetic relatedness and plant invader success across two spatial scales. Divers. Distrib. 15, 481–488 (2009).

    Article  Google Scholar 

  100. Paradis, E. & Claude, J. Analysis of comparative data using generalized estimating equations. J. Theor. Biol. 218, 175–185 (2002).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  101. van Kleunen, M. et al. The global naturalized alien flora (GloNAF) database. Ecology https://doi.org/10.1002/ecy.2542 (2018).

Download references

Acknowledgements

M.V.K. was supported by the German Research Foundation DFG (grant number 264740629). P.P. and J.P. were supported by EXPRO grant number 19-28807X (Czech Science Foundation) and long-term research development project RVO 67985939 (Czech Academy of Sciences). F.E. received funding through the 2017–2018 Belmont Forum and BiodivERsA joint call for research proposals under the BiodivScen ERA-Net COFUND programme and the funding organization FWF (‘AlienScenarios’ project number I 4011-B32).

Author information

Authors and Affiliations

Authors

Contributions

M.B.M. conceived the idea; M.B.M. and P.R. designed the research, performed the analysis and wrote the first draft of the paper; F.E., M.V.K., P.P., J.P. and P.W. provided data, edited the paper and provided comments.

Corresponding author

Correspondence to Mohsen B. Mesgaran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Shaun Coutts, Ming Ni and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, full method and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robeck, P., Essl, F., van Kleunen, M. et al. Invading plants remain undetected in a lag phase while they explore suitable climates. Nat Ecol Evol 8, 477–488 (2024). https://doi.org/10.1038/s41559-023-02313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02313-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing