Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic evolutionary interplay between ontogenetic skull patterning and whole-head integration

Abstract

The arrangement and morphology of the vertebrate skull reflect functional and ecological demands, making it a highly adaptable structure. However, the fundamental developmental and macroevolutionary mechanisms leading to different vertebrate skull phenotypes remain unclear. Here we exploit the morphological diversity of squamate reptiles to assess the developmental and evolutionary patterns of skull variation and covariation in the whole head. Our geometric morphometric analysis of a complex squamate ontogenetic dataset (209 specimens, 169 embryos, 44 species), covering stages from craniofacial primordia to fully ossified bones, reveals that morphological differences between snake and lizard skulls arose gradually through changes in spatial relationships (heterotopy) followed by alterations in developmental timing or rate (heterochrony). Along with dynamic spatiotemporal changes in the integration pattern of skull bone shape and topology with surrounding brain tissues and sensory organs, we identify a relatively higher phenotypic integration of the developing snake head compared with lizards. The eye, nasal cavity and Jacobson’s organ are pivotal in skull morphogenesis, highlighting the importance of sensory rearrangements in snake evolution. Furthermore, our findings demonstrate the importance of early embryonic, ontogenetic and tissue interactions in shaping craniofacial evolution and ecological diversification in squamates, with implications for the nature of cranio-cerebral relations across vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Squamate phylogeny and ontogenetic skull shape diversity.
Fig. 2: Patterns of diversification in head soft tissues during snake and lizard ontogeny.
Fig. 3: Integration pattern of developing soft tissues and skull parts in snakes and lizards.
Fig. 4: Shape integration of skull bones with soft tissues in squamates.
Fig. 5: Head integration beyond shape parameters.
Fig. 6: Ontogenetic model of skull evolution and integration pattern.

Similar content being viewed by others

Data availability

Raw landmark data, encompassing all the required landmarks needed for replicating the analyses, and surface files used for visualization are available on the Zenodo repository (https://zenodo.org/record/8376575). CT-scan data for key adult squamate species and the embryonic series of L. lugubris are publicly available in the published literature53,88 and Morphosource database (https://www.morphosource.org/), respectively.

Code availability

R scripts for conducting the analyses and surface files used in specific analyses are available on the Zenodo repository (https://zenodo.org/record/8376575).

References

  1. Hirasawa, T. & Kuratani, S. Evolution of the vertebrate skeleton: morphology, embryology, and development. Zool. Lett. 1, 2 (2015).

    Google Scholar 

  2. Emerson, S. B. & Bramble, D. M. in The Skull: Functional and Evolutionary Mechanisms Vol. 3 (eds Hanken, J. & Hall, B. K.) 384–421 (University of Chicago Press, 1993).

  3. Patterson, M. et al. Ontogenetic shift in diet of a large elapid snake is facilitated by allometric change in skull morphology. Evol. Ecol. 36, 489–509 (2022).

    Google Scholar 

  4. Scanferla, A. Postnatal ontogeny and the evolution of macrostomy in snakes. R. Soc. Open Sci. 3, 160612 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  5. Schwab, J. A. et al. Ontogenetic variation in the crocodylian vestibular system. J. Anat. 240, 821–832 (2022).

    PubMed  Google Scholar 

  6. Esquerré, D., Sherratt, E. & Keogh, J. S. Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes. Evolution 71, 2829–2844 (2017).

    PubMed  Google Scholar 

  7. Pavón-Vázquez, C. J., Esquerré, D. & Keogh, J. S. Ontogenetic drivers of morphological evolution in monitor lizards and allies (Squamata: Paleoanguimorpha), a clade with extreme body size disparity. BMC Ecol. Evol. 22, 15 (2022).

    PubMed  PubMed Central  Google Scholar 

  8. Fernandez Blanco, M. V., Cassini, G. H. & Bona, P. Skull ontogeny of extant caimans: a three-dimensional geometric morphometric approach. Zoology 129, 69–81 (2018).

    PubMed  Google Scholar 

  9. Foth, C., Hedrick, B. P. & Ezcurra, M. D. Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs. PeerJ 4, e1589 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Palci, A., Lee, M. S. Y. & Hutchinson, M. N. Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by micro-CT scan data and three-dimensional geometric morphometrics. J. Anat. 229, 723–754 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Piras, P. et al. The role of post-natal ontogeny in the evolution of phenotypic diversity in Podarcis lizards: Podarcis lizards post-natal ontogeny. J. Evol. Biol. 24, 2705–2720 (2011).

    CAS  PubMed  Google Scholar 

  12. Geiger, M. et al. Neomorphosis and heterochrony of skull shape in dog domestication. Sci. Rep. 7, 13443 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  13. Da Silva, F. O. et al. The ecological origins of snakes as revealed by skull evolution. Nat. Commun. 9, 376 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  14. Fabbri, M. et al. The skull roof tracks the brain during the evolution and development of reptiles including birds. Nat. Ecol. Evol. 1, 1543–1550 (2017).

    PubMed  Google Scholar 

  15. Bhullar, B.-A. S. et al. Birds have paedomorphic dinosaur skulls. Nature 487, 223–226 (2012).

    ADS  CAS  PubMed  Google Scholar 

  16. Morris, Z. S., Vliet, K. A., Abzhanov, A. & Pierce, S. E. Heterochronic shifts and conserved embryonic shape underlie crocodylian craniofacial disparity and convergence. Proc. Biol. Sci. 286, 20182389 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Morris, Z. S., Vliet, K. A., Abzhanov, A. & Pierce, S. E. Developmental origins of the crocodylian skull table and platyrostral face. Anat. Rec. 305, 2838–2853 (2022).

    Google Scholar 

  18. Navalón, G. et al. Craniofacial development illuminates the evolution of nightbirds (Strisores). Proc. Biol. Sci. 288, 20210181 (2021).

    PubMed  PubMed Central  Google Scholar 

  19. Fabbri, M. et al. A shift in ontogenetic timing produced the unique sauropod skull. Evolution 75, 819–831 (2021).

    PubMed  Google Scholar 

  20. Goswami, A., Polly, P. D., Mock, O. B. & Sánchez-Villagra, M. R. Shape, variance and integration during craniogenesis: contrasting marsupial and placental mammals. J. Evol. Biol. 25, 862–872 (2012).

    CAS  PubMed  Google Scholar 

  21. Gray, J. A., Sherratt, E., Hutchinson, M. N. & Jones, M. E. H. Changes in ontogenetic patterns facilitate diversification in skull shape of Australian agamid lizards. BMC Evol. Biol. 19, 1–10 (2019).

    CAS  Google Scholar 

  22. Evans, K. M., Waltz, B., Tagliacollo, V., Chakrabarty, P. & Albert, J. S. Why the short face? Developmental disintegration of the neurocranium drives convergent evolution in neotropical electric fishes. Ecol. Evol. 7, 1783–1801 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Colangelo, P., Ventura, D., Piras, P., Pagani Guazzugli Bonaiuti, J. & Ardizzone, G. Are developmental shifts the main driver of phenotypic evolution in Diplodus spp. (Perciformes: Sparidae)? BMC Evol. Biol. 19, 106 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. White, H. E. et al. Pedomorphosis in the ancestry of marsupial mammals. Curr. Biol. 33, 2136–2150.e4 (2023).

    PubMed  Google Scholar 

  25. Wilson, L. A. B. et al. Patterns of ontogenetic evolution across extant marsupials reflect different allometric pathways to ecomorphological diversity. Nat. Commun. 14, 2689 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Young, N. M. et al. Embryonic bauplans and the developmental origins of facial diversity and constraint. Development 141, 1059–1063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Griffin, C. T. et al. The developing bird pelvis passes through ancestral dinosaurian conditions. Nature 608, 346–352 (2022).

    ADS  CAS  PubMed  Google Scholar 

  28. Beeching, S. C., Elsey, R. M. & Rehorek, S. J. Ontogeny of the American alligator (Alligator mississippiensis) prenatal head: a morphometric approach. J. Morphol. 283, 805–814 (2022).

    PubMed  Google Scholar 

  29. Navalón, G., Marugán-Lobón, J., Bright, J. A., Cooney, C. R. & Rayfield, E. J. The consequences of craniofacial integration for the adaptive radiations of Darwin’s finches and Hawaiian honeycreepers. Nat. Ecol. Evol. 4, 270–278 (2020).

    PubMed  Google Scholar 

  30. Hedrick, B. P. et al. Morphological diversification under high integration in a hyper diverse mammal clade. J. Mamm. Evol. 27, 563–575 (2020).

    Google Scholar 

  31. Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Phil. Trans. R. Soc. B 369, 20130254 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ackermann, R. Ontogenetic integration of the hominoid face. J. Hum. Evol. 48, 175–197 (2005).

    PubMed  Google Scholar 

  33. Hanson, M., Hoffman, E. A., Norell, M. A. & Bhullar, B.-A. S. The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization. Science 372, 601–609 (2021).

    ADS  CAS  PubMed  Google Scholar 

  34. Yi, H. & Norell, M. A. The burrowing origin of modern snakes. Sci. Adv. 1, e1500743 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  35. Evers, S. W. et al. Independent origin of large labyrinth size in turtles. Nat. Commun. 13, 5807 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lautenschlager, S., Ferreira, G. S. & Werneburg, I. Sensory evolution and ecology of early turtles revealed by digital endocranial reconstructions. Front. Ecol. Evol. 6, 7 (2018).

    Google Scholar 

  37. DeMyer, W., Zeman, W. & Palmer, C. G. The face predicts the brain: diagnostic significance of median facial anomalies for holoprosencephaly (arhinencephaly). Pediatrics 34, 256–263 (1964).

    CAS  PubMed  Google Scholar 

  38. Ferreira, G. S., Werneburg, I., Lautenschlager, S. & Evers, S. W. in Paleoneurology of Amniotes: New Directions in the Study of Fossil Endocasts (eds. Dozo, M. T., Paulina-Carabajal, A., Macrini, T. E. & Walsh, S.) 79–121 (Springer International Publishing, 2023).

  39. Koyabu, D. et al. Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size. Nat. Commun. 5, 3625 (2014).

    ADS  PubMed  Google Scholar 

  40. Marugán‐Lobón, J., Nebreda, S. M., Navalón, G. & Benson, R. B. J. Beyond the beak: brain size and allometry in avian craniofacial evolution. J. Anat. 240, 197–209 (2022).

    PubMed  Google Scholar 

  41. Richtsmeier, J. T. et al. Phenotypic integration of neurocranium and brain. J. Exp. Zool. B 306, 360–378 (2006).

    Google Scholar 

  42. Hu, D. et al. Signals from the brain induce variation in avian facial shape. Dev. Dyn. 244, 1133–1143 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Martínez-Abadías, N. et al. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models. PLoS ONE 6, e26425 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  44. Conith, A. J., Hope, S. A. & Albertson, R. C. Covariation of brain and skull shapes as a model to understand the roles for crosstalk in development and evolution. Evol. Dev. 25, 85–102 (2023).

    PubMed  Google Scholar 

  45. Evans, S. E. in Biology of the Reptilia, Morphology H: The Skull of Lepidosauria Vol. 20 (eds. Gans, C., Gaunt, A. S. & Adler, K.) 2–227 (Society for the Study of Amphibians and Reptiles, 2008).

  46. Cundall, D. & Irish, F. in Biology of the Reptilia, Morphology H: The Skull of Lepidosauria Vol. 20 (eds. Gans, C., Gaunt, A. S. & Adler, K.) 349–692 (Society for the Study of Amphibians and Reptiles, 2008).

  47. Ollonen, J., Da Silva, F. O., Mahlow, K. & Di-Poï, N. Skull development, ossification pattern, and adult shape in the emerging lizard model organism Pogona vitticeps: a comparative analysis with other squamates. Front. Physiol. 9, 278 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Watanabe, A. et al. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc. Natl Acad. Sci. USA 116, 14688–14697 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Werneburg, I. & Sánchez-Villagra, M. R. Skeletal heterochrony is associated with the anatomical specializations of snakes among squamate reptiles. Evolution 69, 254–263 (2015).

    PubMed  Google Scholar 

  50. Rhoda, D., Polly, P. D., Raxworthy, C. & Segall, M. Morphological integration and modularity in the hyperkinetic feeding system of aquatic‐foraging snakes. Evolution 75, 56–72 (2021).

    PubMed  Google Scholar 

  51. Asakura, Y. & Kawabe, S. Anatomical network analyses reveal evolutionary integration and modularity in the lizards skull. Sci. Rep. 12, 14429 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Strong, C. R. C., Scherz, M. D. & Caldwell, M. W. Convergence, divergence, and macroevolutionary constraint as revealed by anatomical network analysis of the squamate skull, with an emphasis on snakes. Sci. Rep. 12, 14469 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Macrì, S., Savriama, Y., Khan, I. & Di-Poï, N. Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat. Commun. 10, 5560 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  54. Underwood, G. in Biology of the Reptilia, Morphology B Vol. 2 (eds. Gans, C. & Parsons, T. S.) 1–97 (Academic Press, 1970).

  55. Schoch, R. R. Amphibian skull evolution: the developmental and functional context of simplification, bone loss and heterotopy. J. Exp. Zool. B 322, 619–630 (2014).

    Google Scholar 

  56. Tokita, M., Chaeychomsri, W. & Siruntawineti, J. Skeletal gene expression in the temporal region of the reptilian embryos: implications for the evolution of reptilian skull morphology. SpringerPlus 2, 336 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. Lee, H. W., Esteve-Altava, B. & Abzhanov, A. Evolutionary and ontogenetic changes of the anatomical organization and modularity in the skull of archosaurs. Sci. Rep. 10, 16138 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Plateau, O. & Foth, C. Birds have peramorphic skulls, too: anatomical network analyses reveal oppositional heterochronies in avian skull evolution. Commun. Biol. 3, 195 (2020).

    PubMed  PubMed Central  Google Scholar 

  59. Fabre, A.-C. et al. Metamorphosis shapes cranial diversity and rate of evolution in salamanders. Nat. Ecol. Evol. 4, 1129–1140 (2020).

    PubMed  Google Scholar 

  60. Evans, K. M. et al. Integration drives rapid phenotypic evolution in flatfishes. Proc. Natl Acad. Sci. USA 118, e2101330118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Simões, T. R., Vernygora, O., Caldwell, M. W. & Pierce, S. E. Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nat. Commun. 11, 3322 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  62. Sanger, T. J., Mahler, D. L., Abzhanov, A. & Losos, J. B. Roles for modularity and constraint in the evolution of cranial diversity among Anolis lizards. Evol. Int. J. Org. Evol. 66, 1525–1542 (2012).

    Google Scholar 

  63. Schwenk, K. Of tongues and noses: chemoreception in lizards and snakes. Trends Ecol. Evol. 10, 7–12 (1995).

    CAS  PubMed  Google Scholar 

  64. Vidal, N. & Hedges, S. B. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. C. R. Biol. 328, 1000–1008 (2005).

    CAS  PubMed  Google Scholar 

  65. Segall, M., Cornette, R., Rasmussen, A. R. & Raxworthy, C. J. Inside the head of snakes: influence of size, phylogeny, and sensory ecology on endocranium morphology. Brain Struct. Funct. 226, 2401–2415 (2021).

    PubMed  Google Scholar 

  66. Yaryhin, O., Klembara, J., Pichugin, Y., Kaucka, M. & Werneburg, I. Limb reduction in squamate reptiles correlates with the reduction of the chondrocranium: a case study on serpentiform anguids. Dev. Dyn. 250, 1300–1317 (2021).

    PubMed  Google Scholar 

  67. Hsiang, A. Y. et al. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evol. Biol. 15, 87 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Gower, D. J., Hauzman, E., Simoes, B. F. & Schott, R. K. in The Origin and Early Evolutionary History of Snakes (eds. Gower, D. J. & Zaher, H.) 316–348 (Cambridge Univ. Press, 2022).

  69. Yin, W. et al. Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper. Nat. Commun. 7, 13107 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Castoe, T. A. et al. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc. Natl Acad. Sci. USA 110, 20645–20650 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Müller, J., Bickelmann, C. & Sobral, G. The evolution and fossil history of sensory perception in amniote vertebrates. Annu. Rev. Earth Planet. Sci. 46, 495–519 (2018).

    ADS  Google Scholar 

  72. Le Duc, D. & Schöneberg, T. Adaptation to nocturnality—learning from avian genomes. BioEssays 38, 694–703 (2016).

    PubMed  Google Scholar 

  73. Caprette, C. L., Lee, M. S. Y., Shine, R., Mokany, A. & Downhower, J. F. The origin of snakes (Serpentes) as seen through eye anatomy. Biol. J. Linn. Soc. 81, 469–482 (2004).

    Google Scholar 

  74. Kishida, T. et al. Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes. Proc. Biol. Sci. 286, 20191828 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kishida, T. Olfaction of aquatic amniotes. Cell Tissue Res. 383, 353–365 (2021).

    PubMed  Google Scholar 

  76. Brykczynska, U., Tzika, A. C., Rodriguez, I. & Milinkovitch, M. C. Contrasted evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles. Genome Biol. Evol. 5, 389–401 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Gans, C. Tetrapod limblessness: evolution and functional corollaries. Am. Zool. 15, 455–467 (1975).

    Google Scholar 

  78. Wake, M. H. The comparative morphology and evolution of the eyes of caecilians (Amphibia, Gymnophiona). Zoomorphology 105, 277–295 (1985).

    Google Scholar 

  79. Cundall, D. & Rossman, D. A. Cephalic anatomy of the rare Indonesian snake Anomochilus weberi. Zool. J. Linn. Soc. 109, 235–273 (1993).

    Google Scholar 

  80. Strong, C. R. C., Palci, A. & Caldwell, M. W. Insights into skull evolution in fossorial snakes, as revealed by the cranial morphology of Atractaspis irregularis (Serpentes: Colubroidea). J. Anat. 238, 146–172 (2021).

    PubMed  Google Scholar 

  81. Deckelbaum, R. A. et al. Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1. Development 139, 1346–1358 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Teng, C. S., Cavin, L., Maxson, R. E. Jr, Sánchez-Villagra, M. R. & Crump, J. G. Resolving homology in the face of shifting germ layer origins: lessons from a major skull vault boundary. eLife 8, e52814 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Maddin, H. C., Piekarski, N., Sefton, E. M. & Hanken, J. Homology of the cranial vault in birds: new insights based on embryonic fate-mapping and character analysis. R. Soc. Open Sci. 3, 160356 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  84. Kuroda, S., Adachi, N. & Kuratani, S. A detailed redescription of the mesoderm/neural crest cell boundary in the murine orbitotemporal region integrates the mammalian cranium into a pan-amniote cranial configuration. Evol. Dev. 25, 32–53 (2023).

    CAS  PubMed  Google Scholar 

  85. Noden, D. M. & Trainor, P. A. Relations and interactions between cranial mesoderm and neural crest populations. J. Anat. 207, 575–601 (2005).

    PubMed  PubMed Central  Google Scholar 

  86. Piekarski, N., Gross, J. B. & Hanken, J. Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull. Nat. Commun. 5, 5661 (2014).

    ADS  CAS  PubMed  Google Scholar 

  87. Kague, E. et al. Skeletogenic fate of zebrafish cranial and trunk neural crest. PLoS ONE 7, e47394 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Griffing, A. H. et al. Embryonic development of a parthenogenetic vertebrate, the mourning gecko (Lepidodactylus lugubris). Dev. Dyn. 248, 1070–1090 (2019).

    CAS  PubMed  Google Scholar 

  89. Werneburg, I., Polachowski, K. M. & Hutchinson, M. N. Bony skull development in the Argus monitor (Squamata, Varanidae, Varanus panoptes) with comments on developmental timing and adult anatomy. Zoology 118, 255–280 (2015).

    PubMed  Google Scholar 

  90. Khannoon, E. R., Ollonen, J. & Di-Poï, N. Embryonic development of skull bones in the Sahara horned viper (Cerastes cerastes), with new insights into structures related to the basicranium and braincase roof. J. Anat. 237, 1–19 (2020).

    PubMed  PubMed Central  Google Scholar 

  91. Diaz, R. E. et al. Captive care, raising, and breeding of the veiled chameleon (Chamaeleo calyptratus). Cold Spring Harb. Protoc. 2015, 943–949 (2015).

    PubMed  Google Scholar 

  92. Tahara, Y. & Obara, K. A novel shell-less culture system for chick embryos using a plastic film as culture vessels. J. Poult. Sci. 51, 307–312 (2014).

    Google Scholar 

  93. Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2010).

    PubMed  Google Scholar 

  94. Baken, E. K., Collyer, M. L., Kaliontzopoulou, A. & Adams, D. C. geomorph v4.0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 12, 2355–2363 (2021).

    Google Scholar 

  95. Adams, D. C. & Otárola-Castillo, E. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).

    Google Scholar 

  96. Sievert, C. Interactive web-based data visualization with R, plotly, and shiny (Chapman and Hall/CRC, 2020).

  97. Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204, 23–31 (2016).

    Google Scholar 

  98. Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinforma. 69, e96 (2020).

    Google Scholar 

  99. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Google Scholar 

  100. Yu, G., Lam, T. T.-Y., Zhu, H. & Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 35, 3041–3043 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu, G. Data Integration, Manipulation and Visualization of Phylogenetic Trees (Chapman and Hall/CRC, 2022).

  102. Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R version 1.1-3 https://cran.r-project.org/web/packages/RColorBrewer/index.html (2022).

  103. Schlager, S. in Statistical Shape and Deformation Analysis (eds. Zheng, G., Li, S. & Székely, G.) 217–256 (Academic Press, 2017).

  104. Antonio, P. et al. Arothron: an R package for geometric morphometric methods and virtual anthropology applications. Am. J. Phys. Anthropol. 176, 144–151 (2021).

    PubMed  Google Scholar 

  105. Garnier, S. et al. sjmgarnier/viridis: viridis 0.6.0 (pre-CRAN release). Zenodo https://zenodo.org/records/7890878 (2021).

  106. Collyer, M. L. & Adams, D. C. RRPP: an R package for fitting linear models to high‐dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).

    Google Scholar 

  107. Collyer, M. & Adams, D. RRPP: linear model evaluation with randomized residuals in a permutation procedure. R version 1.3.1 https://github.com/mlcollyer/RRPP (2022).

  108. Gerber, S. & Hopkins, M. J. Mosaic heterochrony and evolutionary modularity: the trilobite genus Zacanthopsis as a case study. Evolution 65, 3241–3252 (2011).

    PubMed  Google Scholar 

  109. Marcy, A. E. et al. Australian rodents reveal conserved cranial evolutionary allometry across 10 million years of murid evolution. Am. Nat. 196, 755–768 (2020).

    PubMed  Google Scholar 

  110. Werneburg, I. A standard system to study vertebrate embryos. PLoS ONE 4, e5887 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  111. Lindeløv, J. K. mcp: an R package for regression with multiple change points. Preprint at OSF Preprints https://doi.org/10.31219/osf.io/fzqxv (2020).

  112. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS  PubMed  Google Scholar 

  113. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  114. Wickham, H., Vaughan, D. & Girlich, M. tidyr: tidy messy data. R version 1.3.0 https://tidyr.tidyverse.org/ (2023).

  115. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    ADS  Google Scholar 

  116. Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. dplyr: a grammar of data manipulation. R version 1.1.3 https://dplyr.tidyverse.org/ (2023).

  117. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  118. Watanabe, A., Balanoff, A. M., Gignac, P. M., Gold, M. E. L. & Norell, M. A. Novel neuroanatomical integration and scaling define avian brain shape evolution and development. eLife 10, e68809 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Adams, D. C. Evaluating modularity in morphometric data: challenges with the RV coefficient and a new test measure. Methods Ecol. Evol. 7, 565–572 (2016).

    Google Scholar 

  120. Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18 (2012).

    Google Scholar 

  121. Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R. News 2/3, 7–10 (2002).

    Google Scholar 

  122. Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B 65, 95–114 (2003).

    MathSciNet  Google Scholar 

  123. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models: estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 73, 3–36 (2011).

    Google Scholar 

  124. Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

  125. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

Download references

Acknowledgements

We thank A.-C. Aho, M. Partanen, M. Snepere, T. Ahlskog and J. Ulpovaara for technical assistance in captive breeding and animal care; O. Ovaskainen and H. Laakkonen (Finnish Museum of Natural History) for specimen loans; Helsinki X-ray Laboratory, Department of Physics (University of Helsinki), and especially H. Suhonen and H. Help for access to X-ray CT facilities and assistance with scanning large samples; A. Griffing for providing access to Lepidodactylus lugubris CT data from www.MorphoSource.org (collection of the University of Florida, IP holder Marquette University, funded by National Science Foundation grants: Division of Environmental Biology, grant numbers 1657662 and 1657656, Division of Biological Infrastructure, grant number 1701714); J. Eymann and D. Razmadze for technical assistance; D. Esquerre for the code provided for the heterochrony analysis; K. Happonen for helpful assistance on the spline analysis; M. and P. Joki, Tropicario and LL Reptiles for the chameleon, python and corn snake eggs provided for this study; R. Johansson for a sample donation; K. Koponen, M. Launiainen, A. Seppälä, J. Jalkanen, T. Rissanen, M. Tiusanen, M. Aulio, P. Puustinen, M. P. Pulkkinen, J. Takkinen and L. Sagath for assistance in field work; all the landowners for the permits given for field work; members of the Di-Poï laboratory and R. Rice, L. Säilä-Corfe and J. Jernvall for helpful discussions; and D. Ho for proofreading. This work was supported by funds from the Academy of Finland (decision 321910 to N.D.-P.), Institute of Biotechnology (to N.D.-P.), Sigrid Jusélius Foundation (to N.D.-P.), Minerva Foundation (to N.D.-P.), Integrative Life Science Doctoral Program (to J.O.), Finnish Cultural Foundation (to J.O.), Kuopion Luonnon Ystävien Yhdistys (to J.O.), Societas Biologica Fennica Vanamo (to J.O.), Ella and Georg Ehrnrooth Foundation (to J.O.), Oskar Öflund Stiftelse sr (to J.O.), Doctoral School in Health Sciences (to J.O.), Swedish Cultural Foundation in Finland (to I.-M.A.), Carl Gans Foundation (to J.O.) and Deputyship for Research & lnnovation, Ministry of Education in Saudi Arabia (project number 445-5-702 to E.R.K.).

Author information

Authors and Affiliations

Authors

Contributions

J.O. and N.D.-P. designed and planned the overall experimental approach. J.O., E.R.K., S.M., V.V., J.K., J.S., A.S, I.W., R.E.D. and N.D.-P. contributed to embryonic and/or postnatal specimen collection and preparation. Micro-CT scans were carried out by J.O., S.M., J.K, A.S. and I.-M.A. The 3D reconstructions and segmentations were carried out by J.O. and S.M. J.O. collected the 3D landmark data and performed all geometric morphometric and statistical analyses. J.O. and N.D.-P. created the figures and wrote the article. All co-authors contributed in the form of discussion and critical comments. All authors approved the final version of the article.

Corresponding author

Correspondence to Nicolas Di-Poï.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Reconstruction of ancestral trajectories.

Ancestral trajectories of modern snake (black) and toxicoferans (light grey) for skull (a, c, e) and soft tissues (b, d, f) at stages 1–2 (a, b), stage 3 (c, d), and stages 4–5 (e, f). The reconstructions involved the estimation of the ancestral intercept, angle, as well as minimum and maximum size. The five main developmental stages (stages 1–5) are colour-coded as before. Species names and the nodes employed for the reconstructions are indicated on the phylogenetic trees. Silhouettes from PhyloPic.org (creator credits: snake, Michael Keesay; lizard, Jose Carlos Arenas-Monroy).

Supplementary information

Supplementary Information

Supplementary Figs. 1–34, Tables 1–87 and References.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ollonen, J., Khannoon, E.R., Macrì, S. et al. Dynamic evolutionary interplay between ontogenetic skull patterning and whole-head integration. Nat Ecol Evol 8, 536–551 (2024). https://doi.org/10.1038/s41559-023-02295-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02295-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing