Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Initial Upper Palaeolithic material culture by 45,000 years ago at Shiyu in northern China

Abstract

The geographic expansion of Homo sapiens populations into southeastern Europe occurred by 47,000 years ago (47 ka), marked by Initial Upper Palaeolithic (IUP) technology. H. sapiens was present in western Siberia by 45 ka, and IUP industries indicate early entries by 50 ka in the Russian Altai and 46–45 ka in northern Mongolia. H. sapiens was in northeastern Asia by 40 ka, with a single IUP site in China dating to 43–41 ka. Here we describe an IUP assemblage from Shiyu in northern China, dating to 45 ka. Shiyu contains a stone tool assemblage produced by Levallois and Volumetric Blade Reduction methods, the long-distance transfer of obsidian from sources in China and the Russian Far East (800–1,000 km away), increased hunting skills denoted by the selective culling of adult equids and the recovery of tanged and hafted projectile points with evidence of impact fractures, and the presence of a worked bone tool and a shaped graphite disc. Shiyu exhibits a set of advanced cultural behaviours, and together with the recovery of a now-lost human cranial bone, the record supports an expansion of H. sapiens into eastern Asia by about 45 ka.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The distribution of hominin fossils and key archaeological sites in northern Eurasia in the middle and later Late Pleistocene.
Fig. 2: Shiyu site overview, stratigraphy and age determinations.
Fig. 3: Bayesian age model for luminescence and radiocarbon ages.
Fig. 4: Shiyu IUP lithic artefacts, graphite disc and bone tool.

Similar content being viewed by others

Data availability

All the artefacts referred to in this study are curated in the IVPP, Chinese Academy of Sciences, Beijing. The basic measurement data of the lithic artefacts can be found in Supplementary Table 1, and the micro-CT reconstruction of the shaped bone tool is in Supplementary Video 1. All other relevant data are available in the main text or the accompanying supplementary materials. Source data are provided with this paper.

Code availability

The CQL code for the Bayesian age model is provided in Supplementary Table 9.

References

  1. Fewlass, H. et al. A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nat. Ecol. Evol. 4, 794–801 (2020).

    PubMed  Google Scholar 

  2. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rybin, E. & Khatsenovich, A. Middle and Upper Paleolithic Levallois technology in eastern Central Asia. Quat. Int. 535, 117–138 (2020).

    Google Scholar 

  4. Zwyns, N. et al. The northern route for human dispersal in central and northeast Asia: new evidence from the site of Tolbor-16, Mongolia. Sci. Rep. 9, 11759 (2019).

    ADS  PubMed Central  PubMed  Google Scholar 

  5. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  6. Li, F., Petraglia, M., Roberts, P. & Gao, X. The northern dispersal of early modern humans in eastern Eurasia. Sci. Bull. 65, 1699–1701 (2020).

    Google Scholar 

  7. Li, F. et al. Chronology and techno-typology of the Upper Palaeolithic sequence in the Shuidonggou area, northern China. J. World Prehist. 32, 111–141 (2019).

    ADS  Google Scholar 

  8. Bae, C. J., Douka, K. & Petraglia, M. On the origin of modern humans: Asian perspectives. Science 358, eaai9067 (2017).

    PubMed  Google Scholar 

  9. Groucutt, H. S. et al. Rethinking the dispersal of Homo sapiens out of Africa. Evol. Anthropol. 24, 149–164 (2015).

    PubMed Central  PubMed  Google Scholar 

  10. Harvati, K. et al. Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia. Nature 571, 500–504 (2019).

    CAS  PubMed  Google Scholar 

  11. Kuhn, S. L. Initial Upper Paleolithic: a (near) global problem and a global opportunity. Archaeol. Res. Asia 17, 2–8 (2019).

    Google Scholar 

  12. Zwyns, N. The Initial Upper Paleolithic in central and East Asia: blade technology, cultural transmission, and implications for human dispersals. J. Paleolit. Archaeol. 4, 19 (2021).

    ADS  Google Scholar 

  13. Hajdinjak, M. et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature 592, 253–257 (2021).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sikora, M. et al. The population history of northeastern Siberia since the Pleistocene. Nature 570, 182–188 (2019).

    ADS  CAS  PubMed  Google Scholar 

  15. Dennell, R., Martinón-Torres, M. A., de Castro, J. B. & Gao, X. Demographic history of Late Pleistocene China. Quat. Int. 559, 4–13 (2020).

    Google Scholar 

  16. Wang, F. G. et al. Innovative ochre processing and tool use in China 40,000 years ago. Nature 603, 284–289 (2022).

    ADS  CAS  PubMed  Google Scholar 

  17. Li, F., Bae, C. J., Ramsey, B., Chen, F. & Gao, X. Re-dating Zhoukoudian Upper Cave, northern China and its regional significance. J. Hum. Evol. 121, 170–177 (2018).

    CAS  PubMed  Google Scholar 

  18. Devièse, T. et al. Compound-specific radiocarbon dating and mitochondrial DNA analysis of the Pleistocene hominin from Salkhit Mongolia. Nat. Commun. 10, 274 (2019).

    ADS  PubMed Central  PubMed  Google Scholar 

  19. Mao, X. W. et al. The deep population history of northern East Asia from the Late Pleistocene to the Holocene. Cell 184, 3256–3266 (2021).

    CAS  PubMed  Google Scholar 

  20. Li, F. et al. Heading north: Late Pleistocene environments and human dispersals in central and eastern Asia. PLoS ONE 14, e0216433 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Shichi, K. et al. Climate amelioration, abrupt vegetation recovery, and the dispersal of Homo sapiens in Baikal Siberia. Sci. Adv. 9, eadi0189 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Nian, X., Gao, X. & Zhou, L. Chronological studies of Shuidonggou (SDG) locality 1 and their significance for archaeology. Quat. Int. 347, 5–11 (2014).

    Google Scholar 

  23. Keates, S. G. & Kuzmin, Y. V. Shuidonggou localities 1 and 2 in northern China: archaeology and chronology of the Initial Upper Palaeolithic in north-east Asia. Antiquity 89, 714–720 (2015).

    Google Scholar 

  24. Zhang, J. F. et al. Optically stimulated luminescence dating of cave deposits at the Xiaogushan prehistoric site, northeastern China. J. Hum. Evol. 59, 2453–2465 (2010).

    Google Scholar 

  25. d’Errico, F. et al. Zhoukoudian Upper Cave personal ornaments and ochre: rediscovery and reevaluation. J. Hum. Evol. 161, 103088 (2021).

    PubMed  Google Scholar 

  26. Zhang, P. et al. After the blades: the late MIS3 flake-based technology at Shuidonggou Locality 2, North China. PLoS ONE 17, e0274777 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Yu, J. J. et al. The Tongtian Dong Site in Jeminay County, Xinjiang. Archaeology 7, 3–14 (2018).

    Google Scholar 

  28. Li, F. et al. The easternmost Middle Paleolithic (Mousterian) from Jinsitai Cave, North China. J. Hum. Evol. 114, 76–84 (2018).

    PubMed  Google Scholar 

  29. Jia, L. P., Gai, P. & You, Y. Z. The report of excavation at Shiyu site in Shanxi Province. Acta Archaeol. Sin. 1, 39–58 (1972).

    Google Scholar 

  30. You, Y. Z. & Li, Z. W. Discussion on several issues about Shiyu Site. Archaeol. Cult. Relics 5, 44–48 (1982).

    Google Scholar 

  31. Zhang, J. S. Study on the bone fragments from Shiyu. Acta Anthropol. Sin. 3, 333–345 (1991).

    Google Scholar 

  32. Kuzmin, A. Y. Obsidian as a commodity to investigate human migrations in the Upper Paleolithic, Neolithic, and Paleometal of Northeast Asia. Quat. Int. 442, 5–11 (2017).

    Google Scholar 

  33. Yang, S., Deng, C., Zhu, R. & Petraglia, M. The Paleolithic in the Nihewan Basin, China: evolutionary history of an Early to Late Pleistocene record in eastern Asia. Evol. Anthropol. 29, 125–142 (2020).

    PubMed  Google Scholar 

  34. Beyssac, O., Goffé, B., Chopin, C. & Rouzaud, J. N. Raman spectra of carbonaceous material in metasediments: a new geothermometer. J. Metamorph. Geol. 20, 859–871 (2002).

    ADS  CAS  Google Scholar 

  35. Gilligan, I. The prehistoric development of clothing: archaeological implications of a thermal model. J. Archaeol. Method Theory 17, 15–80 (2010).

    Google Scholar 

  36. D’Errico, F., Vanhaeren, M. & Queffelec, A. Les galets perforés de Praileaitz I (Deba, Gipuzkoa): la cueva de Praileaitz I (Deba, Gipuzkoa, Euskal Herria). Interv. Arqueol. 2000–2009 1, 453–484 (2017).

    Google Scholar 

  37. Currery, J. D. Bones: Structure and Mechanics (Princeton Univ. Press, 2002).

  38. Kolb, C. et al. Mammalian bone palaeohistology: a survey and new data with emphasis on island forms. PeerJ 3, e1358 (2015).

    PubMed Central  PubMed  Google Scholar 

  39. Bae, C. J. Paleolithic cave home bases, bone tools, and art and symbolism: perspectives from Korea. Hoseo Archaeol. 29, 50–95 (2013).

    Google Scholar 

  40. Norton, C. J. The current state of Korean paleoanthropology. J. Hum. Evol. 38, 803–825 (2000).

    CAS  PubMed  Google Scholar 

  41. Jia, L., Wei, Q. & Li, C. Report on the excavation of Xujiayao Man Site in 1976. Vertebr. Palasiat. 17, 277–293 (1979).

    Google Scholar 

  42. Pei, W. C. On the Upper Cave industry. Palaeontol. Sin. 9, 1–59 (1939).

    Google Scholar 

  43. Sohn, P., Park, Y. & Han, C. Yonggul Cave: palaeontological evidence and cultural behaviour. Bull. Ippa. 10, 92–98 (1991).

    Google Scholar 

  44. Doyon, L., Li, Z., Wang, H., Geis, L. & d’Errico, F. A 115,000-year-old expedient bone technology at Lingjing, Henan, China. PLoS ONE 16, e0250156 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Bae, K. Origin and patterns of the Upper Paleolithic industries in the Korean Peninsula and movement of modern humans in East Asia. Quat. Int. 221, 103–112 (2010).

    Google Scholar 

  46. Izuho, M. & Kaifu, Y. in The Emergence and Diversity of Modern Human Behavior in Palaeolithic Asia (eds Kaifu, Y. et al.) 289–313 (Texas A & M Univ. Press, 2015).

  47. Lee, G. K. & Sano, K. Were tanged points mechanically delivered armatures? Functional and morphometric analyses of tanged points from an Upper Paleolithic site at Jingeuneul, Korea. Archaeol. Anthropol. Sci. 11, 2453–2465 (2019).

    Google Scholar 

  48. Bae, C. J. Late Pleistocene human evolution in eastern Asia: behavioral perspectives. Curr. Anthropol. 58, 514–526 (2017).

    Google Scholar 

  49. Massilani, D. et al. Denisovan ancestry and population history of early East Asians. Science 370, 579–583 (2020).

    CAS  PubMed  Google Scholar 

  50. Zhang, D. J. et al. Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau. Science 370, 584–587 (2020).

    CAS  PubMed  Google Scholar 

  51. Jiang, P. A fossil human tooth from Jilin Province. Vertebr. Palasiat. 20, 65–71 (1982).

    Google Scholar 

  52. Xie, J. Y., Zhang, Z. B. & Yang, F. X. The human fossil found in Wushan, Gansu Province. Prehistory 4, 47–51+99 (1987).

    Google Scholar 

  53. Gao, X. & Norton, C. J. Critique of the Chinese ‘Middle Paleolithic’. Antiquity 76, 397–412 (2002).

    Google Scholar 

  54. Brantingham, P. J., Olsen, J. W., Rech, J. A. & Krivoshapkin, A. I. Raw material quality and prepared core technologies in northeast Asia. J. Archaeol. Sci. 27, 255–271 (2000).

    Google Scholar 

  55. Ramsey, B. C., Higham, T. F. G., Bowles, A. & Hedges, R. Improvements to the pre-treatment of bone at Oxford. Radiocarbon 46, 155–163 (2004).

    CAS  Google Scholar 

  56. Ramsey, B. C., Higham, T. F. G. & Leach, P. Towards high-precision AMS: progress and limitations. Radiocarbon 46, 17–24 (2004).

    CAS  Google Scholar 

  57. Higham, T., Jacobi, R. M. & Bronk Ramsey, C. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48, 179–195 (2006).

    CAS  Google Scholar 

  58. Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103–112 (2010).

    CAS  Google Scholar 

  59. Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    CAS  Google Scholar 

  60. Ramsey, B. C. OxCal 4.4 Manual, https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html (2021).

  61. Huntley, D. J., Godfrey-Smith, D. I. & Thewalt, M. L. W. Optical dating of sediments. Nature 313, 105–107 (1985).

    ADS  Google Scholar 

  62. Aitken, M. J. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence (Oxford Univ. Press,1998).

  63. Roberts, R. G. et al. Optical dating in archaeology: thirty years in retrospect and grand challenges for the future. J. Archaeol. Sci. 56, 41–60 (2015).

    Google Scholar 

  64. Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H. & Olley, J. M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, Experimental design and statistical models. Archaeometry 41, 339–364 (1999).

    Google Scholar 

  65. Murray, A. S. & Wintle, A. G. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiat. Meas. 37, 377–381 (2003).

    CAS  Google Scholar 

  66. Murray, A. S. & Wintle, A. G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose procedure. Radiat. Meas. 32, 57–73 (2000).

    CAS  Google Scholar 

  67. Li, B. & Li, S. H. Luminescence dating of K-feldspar from sediments: a protocol without anomalous fading correction. Quat. Geochronol. 6, 468–479 (2011).

    Google Scholar 

  68. Zhang, J. F., Zhou, L. P. & Yue, S. Y. Dating fluvial sediments by optically stimulated luminescence: selection of equivalent doses for age calculation. Quat. Sci. Rev. 22, 1123–1129 (2003).

    ADS  Google Scholar 

  69. OxCal v.4.1.3 (Univ. Oxford, 2009).

  70. Ramsey, B. C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    CAS  Google Scholar 

  71. Jia, W. P. et al. New pieces: the acquisition and distribution of volcanic glass sources in northeast China during the Holocene. J. Archaeol. Sci. 40, 971–982 (2013).

    CAS  Google Scholar 

  72. Perreault, C. et al. Characterization of obsidian from the Tibetan Plateau by XRF and NAA. J. Archaeol. Sci. Rep. 5, 392–399 (2016).

    Google Scholar 

  73. Inizan, M.-L., Reduron-Ballinger, M., Roche, H. & Tixier, J. Technology and Terminology of Knapped Stone (CREP, 1999).

  74. Debénath, A. & Dibble, H. L. Handbook of Paleolithic Typology: Lower and Middle Paleolithic of Europe (Univ. Pennsylvania Museum, 1994).

  75. Semenov, S. A Prehistoric Technology: An Experimental Study of the Oldest Tools and Artefacts from Traces of Manufacture and Wear (Cory, Adams and Mackay, 1964).

  76. Hayden, B. (ed.) Lithic Use-Wear Analysis (Academic Press, 1979).

  77. Keeley, L. H. Experimental Determination of Stone Tool Uses: A Microwear Analysis (Univ. Chicago Press, 1980).

  78. Vaughan, P. C. Use-Wear Analysis of Flaked Stone Tools (Univ. Arizona Press, 1985).

  79. Knutsson, K. Patterns of Tool Use: Scanning Electron Microscopy of Experimental Quartz Tools (Societas Archaeologica Upsalensis, 1988).

  80. González, J. E. & Ibáñez, J. J. Metodología de Análisis Funcional de Instrumentos Tallados en Sílex (Univ. Deusto, 1994).

  81. Levi Sala, I. A Study of Microscopic Polish on Flint Implements (Tempus Reparatum, 1996).

  82. Odell, G. H. Toward a more behavioral approach to archaeological lithic concentrations. Am. Antiq. 45, 404–431 (1980).

    Google Scholar 

  83. Odell, G. H. The mechanics of use-breakage of stone tools: some testable hypotheses. J. Field Archaeol. 8, 197–209 (1981).

    Google Scholar 

  84. Rots, V. Prehension and Hafting Traces on Flint Tools: A Methodology (Leuven Univ. Press, 2010).

  85. Stordeur, D. Manches et emmanchements préhistoriques: quelques propositions préliminaires. MOM Éd. 15, 11–34 (1987).

    Google Scholar 

  86. Tomasso, S., Cnuts, D., Mikdad, A. & Rots, V. Changes in hafting practices during the Middle Stone Age at Ifri n’Ammar. Quat. Int. 555, 21–32 (2020).

    Google Scholar 

  87. Barham, L. From Hand to Handle: The First Industrial Revolution (Oxford Univ. Press, 2013).

  88. Ollé, A. et al. Microwear features on vein quartz, rock crystal and quartzite: a study combining optical light and scanning electron microscopy. Quat. Int. 424, 154–170 (2016).

    Google Scholar 

  89. Martín-Viveros, J. I. et al. Use-wear analysis of a specific mobile toolkit from the Middle Palaeolithic site of Abric Romaní (Barcelona, Spain): a case study from level M. Archaeol. Anthropol. Sci. 12, 16 (2020).

    Google Scholar 

  90. Pedergnana, A. & Ollé, A. Building an experimental comparative reference collection for lithic micro-residue analysis based on a multi-analytical approach. J. Archaeol. Method Theory 25, 117–154 (2018).

    Google Scholar 

  91. Bunn, H. et al. FxJj50: an Early Pleistocene site in northern Kenya. World Archaeol. 12, 109–136 (1980).

    Google Scholar 

  92. Blumenschine, R. J. Percussion marks, tooth marks, and experimental determination of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J. Hum. Evol. 29, 21–51 (1995).

    Google Scholar 

  93. Binford, L. R. Bones: Ancient Men and Modern Myths (Academic Press, 1981).

  94. Shipman, R. Life History of a Fossil: An Introduction to Taphonomy and Paleoecology (Harvard Univ. Press, 1981).

  95. Bunn, H. T. Meat-Eating and Human Evolution: Studies on the Diet and Subsistence Patterns of Plio-Pleistocene Hominids in East Africa. PhD dissertation, Univ. California, Berkeley (1982).

  96. Fisher, J. W. FisherBone surface modifications in zooarchaeology. J. Archaeol. Method Theory 2, 7–68 (1995).

    Google Scholar 

  97. Domínguez-Rodrigo, M., de Juana, S., Galán, A. & Rodríguez, M. A new protocol to differentiate trampling marks from butchery cut marks. J. Archaeol. Sci. 36, 2643–2654 (2009).

    Google Scholar 

  98. Blumenschine, R. J. An experimental model on the timing of hominid and carnivore influence on archaeological bone assemblages. J. Archaeol. Sci. 15, 483–502 (1988).

    Google Scholar 

  99. Blumenschine, R. & Selvaggio, M. Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature 333, 763–765 (1988).

    ADS  Google Scholar 

  100. Pickering, T. R. & Egeland, P. C. Experimental patterns of hammerstone percussion damage on bones: implications for inferences of carcass processing by humans. J. Archaeol. Sci. 33, 459–469 (2006).

    Google Scholar 

  101. Galán, A. B. et al. A new experimental study on percussion marks and notches and their bearing on the interpretation of hammerstone-broken faunal assemblages. J. Archaeol. Sci. 36, 776–784 (2009).

    Google Scholar 

  102. Johnson, E. Current developments in bone technology. Adv. Archaeol. Method Theory 8, 157–235 (1985).

    Google Scholar 

  103. Villa, P. & Mahieu, E. Breakage patterns of human long bone. J. Hum. Evol. 21, 776–784 (1991).

    Google Scholar 

  104. Capaldo, S. D. & Blumenschine, J. B. A quantitative diagnosis of notches made by hammerstone percussion and carnivore gnawing on bovid long bones. Am. Antiq. 59, 724–748 (1994).

    Google Scholar 

  105. Miller, J. M., Keller, H. M., Heckel, C., Kaliba, P. M. & Thompson, J. C. Approaches to land snail shell bead manufacture in the Early Holocene of Malawi. Archaeol. Anthropol. Sci. 13, 37 (2021).

    Google Scholar 

  106. Raad, D. R. & Makarewicz, C. A. Application of XRD and digital optical microscopy to investigate lapidary technologies in Pre-Pottery Neolithic societies. J. Archaeol. Sci. Rep. 23, 731–745 (2019).

    Google Scholar 

  107. Gurova, M., Bonsall, C., Bradley, B. & Anastassova, E. Approaching prehistoric skills: experimental drilling in the context of bead manufacturing. Bulg. e-J. Archaeol. 3, 201–221 (2013).

    Google Scholar 

  108. Falci, C. G., Cuisin, J., Delpuech, A., Van Gijn, A. & Hofman, C. L. New insights into use-wear development in bodily ornaments through the study of ethnographic collections. J. Archaeol. Method Theory 26, 755–805 (2019).

    Google Scholar 

  109. Wei, Y., d’Errico, F., Vanhaeren, M., Li, F. & Gao, X. An early instance of Upper Palaeolithic personal ornamentation from China: the freshwater shell bead from Shuidonggou 2. PLoS ONE 11, e0155847 (2016).

    PubMed Central  PubMed  Google Scholar 

  110. Wei, Y. et al. A technological and morphological study of Late Paleolithic ostrich eggshell beads from Shuidonggou, North China. J. Archaeol. Sci. 85, 83–104 (2017).

    Google Scholar 

  111. d’Errico, F. et al. Trajectories of cultural innovation from the Middle to Later Stone Age in Eastern Africa: personal ornaments, bone artifacts, and ocher from Panga ya Saidi, Kenya. J. Hum. Evol. 141, 102737 (2020).

    PubMed  Google Scholar 

  112. Dayet, L., Erasmus, R., Val, A., Feyfant, L. & Porraz, G. Beads, pigments and early Holocene ornamental traditions at Bushman rock shelter, South Africa. J. Archaeol. Sci. Rep. 13, 635–651 (2017).

    Google Scholar 

  113. Dayet, L. et al. Revisiting the Middle and Upper Palaeolithic archaeology of Gruta do Caldeirão (Tomar, Portugal). PLoS ONE 16, e0259089 (2021).

    PubMed Central  PubMed  Google Scholar 

  114. van Gijn, A. in Analecta Praehistorica Leidensia (eds Louwe, K. L. P. & Jongste, P. F. B.) 195–205 (Faculty of Archaeology, Leiden Univ., 2006).

  115. Van Gijn, A. L. et al. Beads and pendants of amber and jet. Nederlandse Archeol. Rapp. 47, 119–128 (2014).

    Google Scholar 

  116. Vanhaeren, M., d’Errico, F., Van Niekerk, K. L., Henshilwood, C. S. & Erasmus, R. M. Thinking strings: additional evidence for personal ornament use in the Middle Stone Age at Blombos Cave, South Africa. J. Hum. Evol. 64, 500–517 (2013).

    PubMed  Google Scholar 

  117. Strafella, A. et al. Micromorphologies of amber beads: manufacturing and use-wear traces as indicators of the artefacts’ biography. Praehist. Z. 92, 144–160 (2017).

    Google Scholar 

  118. Symes, S. A., L’Abbé, E. N., Stull, K. E., La Croix, M. & Pokines, J. T. Taphonomy and the Timing of Bone Fractures in Trauma Analysis: Manual of Forensic Taphonomy (CRC, 2013).

  119. Backwell, L. R. & d’Errico, F. The first use of bone tools: a reappraisal of the evidence from Olduvai Gorge. Tanzan. Palaeontol. Afr. 40, 95–158 (2004).

    Google Scholar 

  120. Cignoni, M. P. et al. MeshLab: an open-source mesh processing tool. In Eurographics Italian Chapter Conference (eds Scarano, V. et al.) 129–136 (2008).

Download references

Acknowledgements

We thank N.-R. Lin (Department of Archaeology of Graduate School of Arts and Letters, Tohoku University) for assistance with figure preparation. We thank Y.-M. Hou and S.-X. Jiang from the IVPP for help with the micro-CT scan and reconstruction. We thank Y. Cao and D.-J. Wang from the College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, for help with the Raman analysis. Financial support for this research was provided by the National Natural Science Foundation of China (grant nos 41888101, 42071003, 42177424, 41977380, 41977379 and 42072212; S.-X.Y., J.-F.Z., C.-L.D. and K.-L.Z.), the National Key R&D Program of China (grant no. 2020YFC1521500; S.-X.Y.), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (grant no. 2020074; S.-X.Y.), the International Partnership Project of the Chinese Academy of Sciences (grant no. 052GJHZ2022024FN; S.-X.Y., M.P., F.d.E. and A.O.), the Key Research Program of the Institute of Geology and Geophysics, Chinese Academy of Sciences (grant no. IGGCAS-201905; S.-X.Y.), the Major Project of the Key Research Base for Humanities and Social Sciences of the Ministry of Education (grant no. 22JJD780005; J.-F.Z.), the Fundamental Research Funds for the Central Universities (grant no. E2E40409X2; Y.-X.Z.), the National Social Science Fund of China (grant nos 20VJXG018 and 21BKG005; W.-G.L.), the Beijing Social Science Fund Project (grant no. 21DTR046; W.-G.L.), Griffith University (S.-X.Y. and M.P.), the Research Council of Norway through its Centres of Excellence funding scheme (SFF Centre for Early Sapiens Behaviour—SapienCE, project no. 262618; F.d.E.), the Talents programme of the University of Bordeaux Initiative d’Excellence (grant no. 191022_001; F.d.E.), the Grand Programme de Recherche ‘Human Past’ of the Initiative d’Excellence of the same university, the European Research Council under the Horizon 2020 programme (QUANTA project, contract no. 951388; F.d.E.), Spanish MICIN/Feder (grant no. PID2021-122355NB-C32; A.O.), the Catalan AGAUR (grant no. 2021SGR-01239; A.O.) and the Univ. Rovira i Virgili (grant no. 2021-PFR-URV-126; A.O.).

Author information

Authors and Affiliations

Authors

Contributions

S.-X.Y., J.-F.Z., C.-L.D., F.d.E. and M.P. obtained funding and initiated the project. S.-X.Y., J.-F.Z., Y.-J.G., W.-W.H., J.-M.S., B.-Y.Y. and Y.-R.W. conducted the fieldwork and site sampling. J.-F.Z., R.W., Y.-J.G., L.-P.Z., K.-L.Z. and C.-L.D. conducted the stratigraphic, dating and palaeoenvironmental studies. W.-G.L. and Y.-X.Z. analysed the source of the raw materials. S.-X.Y., J.-P.Y., H.W., F.-X.H., Y.-R.W., Y.-M.H., M.P. and A.O. analysed the stone artefacts. Y.Z. conducted the zooarchaeological analysis. F.d.E. and A.Q. analysed the stone disc. F.d.E. and E.R. analysed the bone tool. S.-X.Y., J.-F.Z., F.d.E. and M.P. wrote the main text and supplementary materials with specialist contributions from the other authors.

Corresponding authors

Correspondence to Shi-Xia Yang, Jia-Fu Zhang, Francesco d’Errico or Michael Petraglia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of the radiocarbon dates of the IUP sites in 2 Altai (Russia), Mongolia and North China.

The ages (n = 55) of some IUP sites in the Altai and in northern Mongolia, such as Denisova, Kara-Bom, and Tolbor 16 are similar to or older than Shiyu (with the modeled age of 44.8 ± 1.2 ka). The sites in southern Mongolia are relatively younger; the oldest samples are from Layers 7 and 9 of the Orkhon 7 site, with radiocarbon ages of 43.5 ± 1.2 and 43.4 ± 1.0 cal ka BP. For the Shuidonggou (SDG) Locality 1 site, only three samples from cultural layers were radiocarbon determined, with ages of 20.2 ± 0.6, 29.8 ± 1.6 and 41.2 ± 0.2 cal ka BP, respectively, which are younger than Shiyu. Therefore, we deduced that Shiyu is the oldest IUP site in China, even compared with the IUP sites in south Mongolia, based on radiocarbon dates. Shiyu is the oldest IUP site in China, even compared with the IUP sites in south Mongolia, based on radiocarbon dates.

Extended Data Fig. 2 Location of Shiyu in the Nihewan Basin.

a, location of Shiyu and other key Palaeolithic sites dated to marine isotope stage (MIS) 3 (DEM with a resolution of 12.5 m was downloaded from https://search.asf.alaska.edu). b and c, geographic position of Shiyu and surrounding landscapes (map in panel b is made by DEM data with a resolution of 5 m from https://search.asf.alaska.edu).

Extended Data Fig. 3 The cut-marked bones and radiocarbon dating results.

a, 22SY-44 (OxA-43265), shaft fragment of a large-sized animal (most probably Equus sp.) with a set of cut marks oriented obliquely to the long axis of the bone (photoed by authors); b, 22SY-143 (Ox-43266), shaft fragment of a large-sized animal with series of cut marks parallel to the long axis; c, 22sy-282 (Ox-43267-22sy-282), bone fragment of a large-sized animal with cut marks perpendicular to the long axis; d, The radiocarbon ages obtained on the three cut-marked bones from the Shiyu site.

Extended Data Fig. 4 Scatterplot of Rb, Sr, and Zr measurements for the Shiyu obsidian artefacts and obsidian sources across Eastern Asia.

a-c, comparison of trace element (Rb, Sr, and Zr) content for four obsidian artefacts from Shiyu with volcanic glass sources in China and Far East Siberia71,72. d, the four obsidian lithics from Shiyu. Comparison of trace elements (Rb, Sr, and Zr) for four obsidian artefacts from Shiyu and volcanic glass sources in northeast China and Far East Siberia indicate that the source of artefact SY-315 is located in the Changbai Mountain, Northeast China. Artefacts SY-56, SY-316. SY-226 derive from Gladkaya, Far East Siberia. The Shiyu specimens markedly differ from samples in Tibet (NE Obsidian A, B, C and SW Obsidian A, B.)72. The ‘A1, A2, A3 source of Changbai Mountain’ set consists of data from 27, 18, 14 specimens respectively; the ‘Russian basaltic and Gladkaya’ set consists of data from 82 and 22 specimens respectively; the ‘Jiutai, Laoheishan and Jingpohu’ set consists of data from 7, 14 and 11 specimens respectively; the ‘NE Obsidian A, NE Obsidian B, NE Obsidian C, SW Obsidian A and SW Obsidian B’ set consists of data from 9, 1, 3, 28 and 7 specimens respectively. The reference data are from 13 different areas from within and external to China, with 243 specimens forming the background data.

Source data

Extended Data Fig. 5 Tool types and lithic byproducts from Shiyu.

a, products from Levallois and blade reduction sequences. 1, 2, 4, Levallois points with well prepared platforms, or ‘chapeau de gendarme’ platforms; 3, Levallois flake (side flake from a Levallois core); 5, crested blade; 6, 7, broken blades; b, tools. 1-4, tanged tools; 5-6, broken tanged tools; 7, notch; 8, borer; 9, 12, denticulates; 10-11, scrapers.

Extended Data Fig. 6 20SY-362, a used Levallois point (46.23×28.83×9.93 mm).

a-b, detail of the distal edge damage: step-hinge termination on the ventral face with opposing initiation on the tip (5X, 10X) burin-like fracture. c, hafting scar from binding contact around the haft limit on the ventral right medial edge (50X). d, bright spots at the end of step-hinge of the distal edge damage. e-g, hafting bright spot on the ventral right and left proximal edge. h-i, hafting bright spot on the ventral right and left proximal edges (100X).

Extended Data Fig. 7 SY20-02, Tanged tool made on chert flake (43.15×26.58×8.81 mm).

a-c, isolated micro-scarring interpreted as binding scars, around the haft limit on the ventral right medial edge (20X, 30X). d, hafting bright spot on the dorsal medial ridge (50X). e, hafting bright spot on the proximal edge (100X). f, g, invasive soft animal mater polish covering the tool edge (50X).

Extended Data Fig. 8 Technological analysis and Raman analysis of the Shiyu disc.

a, Raman spectrum (RAM292) of the disc surface showing bands typical of graphite. b, positioning, in red, of quantitative values extracted from the RAM292 spectrum within a metamorphic gradient (modified from Fig. 8 of Beyssac)36, indicating that the carbon material used for the production of the disc was submitted to a medium to high degree of metamorphism. c, drawing summarising results of the disc analysis: 1, areas covered by labels and varnish; 2, areas abraded on a grindstone and smoothed by use wear and curatorial handling; 3, facet abraded on a grindstone; 4, fractures developed following clivage planes of the raw material; 5, surface of the perforation; 6, unmodified surface; 7, striations left by grinding indicating the direction of the grinding motion. d, microscopic analysis of the Shiyu disc.1-4, close-up view of the perforation and surrounding areas with location of the micrographs presentedNotice the blunt shiny appearance of the perforation and the palimpsest of randomly oriented striations of different size and length covering the surface, interpreted as resulting from wear and curatorial handling.

Extended Data Fig. 9 Bone tool from Shiyu.

a–c, Photograph, 3D model and drawing of different aspects of a bone tool shaped by knapping. Patterns in c identify flake scars (I), spiral fracture (II), unmodified cortical bone (III), and (IV) limits between these areas. Scale = 1 cm. d, Correlation between the length of Shiyu diaphyesal fragments bearing spiral fractures and the number of flake scars occurring on them compared with the artefact interpreted as bone tool highlights the object stands out for its small size and very large number of flake scars. e, Perspective rendering of the bone tool showing the segmented vascular canals (red). f, g, The two planes correspond to the transverse section (red: f) and the longitudinal section (green: g) of the bone tool. Most of the vascular canals are longitudinally oriented as shown by their circularity when viewed in cross section. Radial anastomoses can be observed in the two sections and appear elongated in transverse section (f) and round in the longitudinal plane (g) (white arrows). The longitudinal vascular canals are organized in circular row and circumferential lamellae are discernible in the subperiosteal region (below the red dotted line in f). Secondary osteons delimited by a cement line are scarce and in less mineralized areas (f and g, arrowheads). The CT images also reveal the presence of diagenetic alteration such as microcracks and inclusion of denser (brighter) particles lying mainly inside the bone empty spaces, namely the vascular canals (blue arrows).

Extended Data Table 1 Optical and radiocarbon age estimates

Supplementary information

Supplementary Information

Supplementary Information sections A–I.

Reporting Summary

Peer Review File

Supplementary Video 1

Micro-CT images of the shaped bone tool.

Supplementary Table 1

Basic measurements and raw material types of the lithic assemblage.

Source data

Source Data Extended Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SX., Zhang, JF., Yue, JP. et al. Initial Upper Palaeolithic material culture by 45,000 years ago at Shiyu in northern China. Nat Ecol Evol 8, 552–563 (2024). https://doi.org/10.1038/s41559-023-02294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02294-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing