Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ecological filtering shapes the impacts of agricultural deforestation on biodiversity

Abstract

The biodiversity impacts of agricultural deforestation vary widely across regions. Previous efforts to explain this variation have focused exclusively on the landscape features and management regimes of agricultural systems, neglecting the potentially critical role of ecological filtering in shaping deforestation tolerance of extant species assemblages at large geographical scales via selection for functional traits. Here we provide a large-scale test of this role using a global database of species abundance ratios between matched agricultural and native forest sites that comprises 71 avian assemblages reported in 44 primary studies, and a companion database of 10 functional traits for all 2,647 species involved. Using meta-analytic, phylogenetic and multivariate methods, we show that beyond agricultural features, filtering by the extent of natural environmental variability and the severity of historical anthropogenic deforestation shapes the varying deforestation impacts across species assemblages. For assemblages under greater environmental variability—proxied by drier and more seasonal climates under a greater disturbance regime—and longer deforestation histories, filtering has attenuated the negative impacts of current deforestation by selecting for functional traits linked to stronger deforestation tolerance. Our study provides a previously largely missing piece of knowledge in understanding and managing the biodiversity consequences of deforestation by agricultural deforestation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: How natural and anthropogenic filtering can shape the observed biodiversity responses to agricultural deforestation.
Fig. 2: The geographical distribution of paired abundance data in our database.
Fig. 3: Variation in assemblage-level impacts of agricultural deforestation across studies and their underlying factors.
Fig. 4: The trait signature of filtering by environmental variability and historical deforestation.
Fig. 5: How the ‘greater-tolerance shift’ of assemblage trait centroids may have occurred under natural and anthropogenic filtering.

Similar content being viewed by others

Data availability

All data used in this study have been uploaded to a public repository, and can be accessed at https://doi.org/10.5281/zenodo.10031327 (ref. 31).

Code availability

All code used in this study have been uploaded to a public repository, and can be accessed at https://doi.org/10.5281/zenodo.10031327 (ref. 31).

References

  1. Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Maxwell, S., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).

    Article  PubMed  Google Scholar 

  7. Outhwaite, C. L., Ortiz, A. M. D., Spooner, F. E. B., Dalin, C. & Newbold, T. Availability and proximity of natural habitat influence cropland biodiversity in forest biomes globally. Glob. Ecol. Biogeogr. 31, 1589–1602 (2022).

    Article  Google Scholar 

  8. Socolar, J. B., Valderrama Sandoval, E. H. & Wilcove, D. S. Overlooked biodiversity loss in tropical smallholder agriculture. Conserv. Biol. 33, 1338–1349 (2019).

    Article  PubMed  Google Scholar 

  9. Elsen, P. R., Kalyanaraman, R., Ramesh, K. & Wilcove, D. S. The importance of agricultural lands for Himalayan birds in winter. Conserv. Biol. 31, 416–426 (2017).

    Article  PubMed  Google Scholar 

  10. Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).

    Article  PubMed  Google Scholar 

  11. Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gonthier, D. J. et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. Biol. Sci. 281, 9–14 (2014).

    Google Scholar 

  13. Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. K. Complex agricultural landscapes host more biodiversity than simple ones: a global meta-analysis. Proc. Natl Acad. Sci. USA 119, e2203385119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Chang. Biol. 23, 4946–4957 (2017).

    Article  ADS  PubMed  Google Scholar 

  15. Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. McLaughlin, A. & Mineau, P. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 55, 201–212 (1995).

    Article  Google Scholar 

  17. Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).

    Article  PubMed  Google Scholar 

  18. Amiot, C., Ji, W., Ellis, E. C. & Anderson, M. G. Temporal and sociocultural effects of human colonisation on native biodiversity: filtering and rates of adaptation. Oikos 130, 1035–1045 (2021).

    Article  ADS  Google Scholar 

  19. Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Article  Google Scholar 

  21. Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl Acad. Sci. USA 117, 1573–1579 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Rapacciuolo, G. et al. The signature of human pressure history on the biogeography of body mass in tetrapods. Glob. Ecol. Biogeogr. 26, 1022–1034 (2017).

    Article  Google Scholar 

  23. Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned? Trends Ecol. Evol. 32, 429–437 (2017).

    Article  PubMed  Google Scholar 

  24. Srinivasan, U., Elsen, P. R. & Wilcove, D. S. Annual temperature variation influences the vulnerability of montane bird communities to land-use change. Ecography 42, 2084–2094 (2019).

    Article  ADS  Google Scholar 

  25. Frishkoff, L. et al. Climate change and habitat conversion favour the same species. Ecol. Lett. 19, 1081–1090 (2016).

    Article  PubMed  Google Scholar 

  26. Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Cartwright, S. J., Nicoll, M. A. C., Jones, C. G., Tatayah, V. & Norris, K. Anthropogenic natal environmental effects on life histories in a wild bird population. Curr. Biol. 24, 536–540 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Weeks, T. L. et al. Climate-driven variation in dispersal ability predicts responses to forest fragmentation in birds. Nat. Ecol. Evol. 7, 1079–1091 (2023).

    Article  PubMed  Google Scholar 

  30. Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hua, F. & Wang, W. Ecological filtering shapes the impacts of agricultural deforestation on biodiversity. Zenodo https://doi.org/10.5281/zenodo.10031327 (2023).

  32. Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Phil. Trans. R. Soc. B 374, 20190012 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Newbold, T. et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. Biol. Sci. 280, 20122131 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Lee, T. M. & Jetz, W. Unravelling the structure of species extinction risk for predictive conservation science. Proc. Biol. Sci. 278, 1329–1338 (2011).

    PubMed  Google Scholar 

  35. Keinath, D. A. et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127 (2017).

    Article  Google Scholar 

  36. Bueno, A. S., Dantas, S. M., Henriques, L. M. P. & Peres, C. A. Ecological traits modulate bird species responses to forest fragmentation in an Amazonian anthropogenic archipelago. Divers. Distrib. 24, 387–402 (2018).

    Article  Google Scholar 

  37. Iglesias, M., del, R., Barchuk, A. & Grilli, M. P. Carbon storage, community structure and canopy cover: a comparison along a precipitation gradient. For. Ecol. Manag. 265, 218–229 (2012).

    Article  Google Scholar 

  38. Boivin, N. L., Zeder, M. A., Fuller, D. Q., Crowther, A. & Larson, G. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  40. Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    Article  ADS  Google Scholar 

  41. Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. in Introduction to Meta-Analysis 1st edn (eds Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R.) Ch. 30 (Wiley, 2009).

  42. Villeger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    Article  PubMed  Google Scholar 

  43. Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article  PubMed  Google Scholar 

  44. Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).

    Article  Google Scholar 

  45. Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).

    Article  Google Scholar 

  46. Balmford, A. Concentrating vs. spreading our footprint: how to meet humanity’s needs at least cost to nature. J. Zool. 315, 79–109 (2021).

    Article  Google Scholar 

  47. Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).

    Article  ADS  Google Scholar 

  48. Crawford, C., Yin, H., Radeloff, V. & Wilcove, D. Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Sci. Adv. 8999, 1–14 (2022).

    Google Scholar 

  49. Neate-clegg, M. H. C. et al. Traits shaping urban tolerance in birds differ around the world. Curr. Biol. 33, 1677–1688 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).

    Article  Google Scholar 

  52. Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Chang. Biol. 22, 137–150 (2016).

    Article  ADS  PubMed  Google Scholar 

  53. Cowie, R. H., Bouchet, P. & Fontaine, B. The sixth mass extinction: fact, fiction or speculation? Biol. Rev. 97, 640–663 (2022).

    Article  PubMed  Google Scholar 

  54. Hua, F. et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 844, 839–844 (2022).

    Article  ADS  Google Scholar 

  55. Rozendaal, D. M. A. et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5, eaau3114 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  56. Lindenmayer, D. B. et al. Novel bird responses to successive, large-scale, landscape transformations. Ecol. Monogr. 89, e01362 (2019).

    Article  Google Scholar 

  57. O’Brien, T. G., Baillie, J. E. M., Krueger, L. & Cuke, M. The wildlife picture index: monitoring top trophic levels. Anim. Conserv. 13, 335–343 (2010).

    Article  Google Scholar 

  58. Yu, L. et al. FROM-GLC Plus: toward near real-time and multi-resolution land cover mapping. GISci. Remote Sens. 59, 1026–1047 (2022).

    Article  Google Scholar 

  59. Copernicus Climate Change Service. Land Cover Classification Gridded Maps from 1992 to Present Derived from Satellite Observation (Climate Data Store (CDS), 2019); https://doi.org/10.24381/cds.006f2c9a

  60. Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1–10 (2015).

    Article  Google Scholar 

  61. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).

    Article  Google Scholar 

  64. Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: linear and nonlinear mixed effects models. R version 3.1-152 (2021).

  65. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  66. Gomes, D. G. E. Should I use fixed effects or random effects when I have fewer than five levels of a grouping factor in a mixed-effects model? PeerJ 10, e12794 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference (Springer, 2004).

  68. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article  Google Scholar 

  69. Bartoń, K. MuMIn: multi-model inference. R version 1.46.0 (2020).

  70. Schielzeth, H. et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11, 1141–1152 (2020).

    Article  Google Scholar 

  71. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  72. Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).

    Article  Google Scholar 

  73. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  74. Nakagawa, S. & De Villemereuil, P. A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin’s rules in comparative analysis. Syst. Biol. 68, 632–641 (2019).

    Article  PubMed  Google Scholar 

  75. Magneville, C. et al. mFD: an R package to compute and illustrate the multiple facets of functional diversity. Ecography 2022, e05904 (2022).

    Article  ADS  Google Scholar 

  76. Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).

    Article  Google Scholar 

  77. Estrada, A., Coates-Estrada, R. & Meritt, D. A. Jr Anthropogenic landscape changes and avian diversity at Los Tuxtlas, Mexico. Biodivers. Conserv. 6, 19–43 (1997).

    Article  Google Scholar 

  78. Li, N. et al. Bird species diversity in Altai riparian landscapes: wood cover plays a key role for avian abundance. Ecol. Evol. 9, 9634–9643 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kmecl, P. & Denac, K. The effects of forest succession and grazing intensity on bird diversity and the conservation value of a Northern Adriatic karstic landscape. Biodivers. Conserv. 27, 2003–2020 (2018).

    Article  Google Scholar 

  80. Arias-Sosa, L. A., Salamanca-Reyes, J. R. & Ramos-Montaño, C. The role of different natural and human-related habitats for the conservation of birds in a high Andean Lake. Wetl. Ecol. Manag. 29, 897–913 (2021).

    Article  Google Scholar 

  81. Mazoyer, M. & Roudart, L. A History of World Agriculture: from the Neolithic Age to the Current Crisis (Monthly Review Press, 2006).

  82. De Beenhouwer, M., Aerts, R. & Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Environ. 175, 1–7 (2013).

    Article  Google Scholar 

  83. Dunn, R. R. Managing the tropical landscape: a comparison of the effects of logging and forest conversion to agriculture on ants, birds, and lepidoptera. For. Ecol. Manag. 191, 215–224 (2004).

    Article  Google Scholar 

  84. Norris, K. et al. Biodiversity in a forest-agriculture mosaic—the changing face of West African rainforests. Biol. Conserv. 143, 2341–2350 (2010).

    Article  Google Scholar 

  85. Philpott, S. M. et al. Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv. Biol. 22, 1093–1105 (2008).

    Article  PubMed  Google Scholar 

  86. Plexida, S., Solomou, A., Poirazidis, K. & Sfougaris, A. Factors affecting biodiversity in agrosylvopastoral ecosystems with in the Mediterranean Basin: a systematic review. J. Arid Environ. 151, 125–133 (2018).

    Article  ADS  Google Scholar 

  87. Núñez-Regueiro, M. M., Siddiqui, S. F. & Fletcher, R. J. Jr Effects of bioenergy on biodiversity arising from land-use change and crop type. Conserv. Biol. 35, 77–87 (2019).

    Article  Google Scholar 

  88. Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161 (2012).

    Article  Google Scholar 

  89. Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009).

    Article  Google Scholar 

  90. Pfeifer, M. et al. BIOFRAG—a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecol. Evol. 4, 1524–1537 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hudson, L. et al. The 2016 Release of the PREDICTS Database (Natural History Museum, 2016); https://doi.org/10.5519/0066354

  92. Fischer, J. et al. Land sparing versus land sharing: moving forward. Conserv. Lett. 7, 149–157 (2014).

    Article  Google Scholar 

  93. Luskin, M. S., Lee, J. S. H., Edwards, D. P., Gibson, L. & Potts, M. D. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Sec. 16, 29–35 (2018).

    Article  Google Scholar 

  94. Abrahamczyk, S., Kessler, M., Dwi Putra, D., Waltert, M. & Tscharntke, T. The value of differently managed cacao plantations for forest bird conservation in Sulawesi, Indonesia. Bird. Conserv. Int. 18, 349–362 (2008).

    Article  Google Scholar 

  95. Bongiorno, S. F. Land use and summer bird populations in northwestern Galicia, Spain. Ibis 124, 1–20 (1982).

    Article  Google Scholar 

  96. Chandler, R. B. et al. A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes. Conserv. Biol. 27, 785–795 (2013).

    Article  PubMed  Google Scholar 

  97. Chiatante, G. & Meriggi, A. The importance of rotational crops for biodiversity conservation in Mediterranean areas. PLoS ONE 11, e0149323 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chiatante, G., Porro, Z., Musacchio, A., Bazzocchi, A. & Meriggi, A. Multi-scale habitat requirements of forest bird species in a highly fragmented landscape. J. Ornithol. 160, 773–788 (2019).

    Article  Google Scholar 

  99. Chiatante, G., Pellitteri-Rosa, D., Torretta, E., Nonnis Marzano, F. & Meriggi, A. Indicators of biodiversity in an intensively cultivated and heavily human modified landscape. Ecol. Indic. 130, 108060 (2021).

    Article  Google Scholar 

  100. Chiawo, D. O., Kombe, W. N. & Craig, A. J. F. K. Bird responses to land use change: guild diversity in a Kenyan coastal forest and adjoining habitats. Emu 118, 281–292 (2018).

    Article  Google Scholar 

  101. Cresswell, W. et al. Densities and habitat preferences of Andean cloud-forest birds in pristine and degraded habitats in north-eastern Ecuador. Bird. Conserv. Int. 9, 129–145 (1999).

    Article  Google Scholar 

  102. Echeverri, A. et al. Precipitation and tree cover gradients structure avian alpha diversity in north-western Costa Rica. Divers. Distrib. 25, 1222–1233 (2019).

    Article  Google Scholar 

  103. Garcia, S., Finch, D. M. & Chávez León, G. Patterns of forest use and endemism in resident bird communities of north-central Michoacán, Mexico. For. Ecol. Manag. 110, 151–171 (1998).

    Article  Google Scholar 

  104. Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 12717 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Huang, G. & Catterall, C. P. Effects of habitat transitions on rainforest bird communities across an anthropogenic landscape mosaic. Biotropica 53, 130–141 (2021).

    Article  Google Scholar 

  106. Hulme, M. F. et al. Conserving the birds of Uganda’s banana-coffee arc: land sparing and land sharing compared. PLoS ONE 8, e54597 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hutto, R. L. Can patterns of habitat use by western Nearctic-Neotropical migratory landbirds in winter inform conservation priorities? Wilson J. Ornithol. 132, 45–60 (2020).

    Article  Google Scholar 

  108. Imboma, T. S., Ferrante, M., You, M.-S., You, S. & L, G. L. Diversity of bird communities in tea (Camellia sinensis) plantations in Fujian province, south-eastern China. Diversity 12, 457 (2020).

    Article  Google Scholar 

  109. Jarrett, C. et al. Bird communities in African cocoa agroforestry are diverse but lack specialized insectivores. J. Appl. Ecol. 58, 1237–1247 (2021).

    Article  Google Scholar 

  110. Kati, V. I. & Sekercioglu, C. H. Diversity, ecological structure, and conservation of the landbird community of Dadia reserve, Greece. Divers. Distrib. 12, 620–629 (2006).

    Article  Google Scholar 

  111. Kułaga, K. & Budka, M. Bird species detection by an observer and an autonomous sound recorder in two different environments: forest and farmland. PLoS ONE 14, e0211970 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Macchi, L. et al. Thresholds in forest bird communities along woody vegetation gradients in the South American Dry Chaco. J. Appl. Ecol. 56, 629–639 (2019).

    Article  Google Scholar 

  113. MacGregor-Fors, I. & Schondube, J. E. Use of tropical dry forests and agricultural areas by neotropical bird communities. Biotropica 43, 365–370 (2011).

    Article  Google Scholar 

  114. Martin, E. A., Viano, M., Ratsimisetra, L., Laloë, F. & Carrière, S. M. Maintenance of bird functional diversity in a traditional agroecosystem of Madagascar. Agric. Ecosyst. Environ. 149, 1–9 (2012).

    Article  Google Scholar 

  115. Morelli, F. et al. Landscape heterogeneity metrics as indicators of bird diversity: determining the optimal spatial scales in different landscapes. Ecol. Indic. 34, 372–379 (2013).

    Article  Google Scholar 

  116. Mulwa, R. K., Neuschulz, E. L., Böhning-Gaese, K. & Schleuning, M. Seasonal fluctuations of resource abundance and avian feeding guilds across forest-farmland boundaries in tropical Africa. Oikos 122, 524–532 (2013).

    Article  ADS  Google Scholar 

  117. Norfolk, O. et al. Birds in the matrix: the role of agriculture in avian conservation in the Taita Hills, Kenya. Afr. J. Ecol. 55, 530–540 (2017).

    Article  Google Scholar 

  118. O’Dea, N. & Whittaker, R. J. How resilient are Andean montane forest bird communities to habitat degradation? Biodivers. Conserv. 16, 1131–1159 (2007).

    Article  Google Scholar 

  119. Ortega-Álvarez, R. et al. Improving the sustainability of working landscapes in Latin America: an application of community-based monitoring data on bird populations to inform management guidelines. For. Ecol. Manag. 409, 56–66 (2018).

    Article  Google Scholar 

  120. Penteado, M., Yamashita, C., Marques, T. S. & Verdade, L. M. Biodiversity in Agricultural Landscapes of Southeastern Brazil (eds Gheler-Costa, C., Lyra-Jorge, M. C. & Verdade, L. M.) Ch. 15 (De Gruyter Open, 2016).

  121. Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Raman, T. R. S., Gonsalves, C., Jeganathan, P. & Mudappa, D. Native shade trees aid bird conservation in tea plantations in southern India. Curr. Sci. 121, 294–305 (2021).

    Article  Google Scholar 

  123. Salgueiro, P. A., Mira, A., Rabaça, J. E. & Santos, S. M. Identifying critical thresholds to guide management practices in agro-ecosystems: insights from bird community response to an open grassland-to-forest gradient. Ecol. Indic. 88, 205–213 (2018).

    Article  Google Scholar 

  124. Shahabuddin, G., Goswami, R., Krishnadas, M. & Menon, T. Decline in forest bird species and guilds due to land use change in the Western Himalaya. Glob. Ecol. Conserv. 25, e01447 (2021).

    Google Scholar 

  125. Sidhu, S., Raman, T. R. S. & Goodale, E. Effects of plantations and home-gardens on tropical forest bird communities and mixed-species bird flocks in the Southern Western Ghats. J. Bombay Nat. Hist. Soc. 107, 91–108 (2010).

    Google Scholar 

  126. Soh, M. C. K., Sodhi, N. S. & Lim, S. L. H. High sensitivity of montane bird communities to habitat disturbance in Peninsular Malaysia. Biol. Conserv. 129, 149–166 (2006).

    Article  Google Scholar 

  127. Sreekar, R. et al. Horizontal and vertical species turnover in tropical birds in habitats with differing land use. Biol. Lett. 13, 20170186 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yamaura, Y. et al. Biodiversity of man-made open habitats in an underused country: a class of multispecies abundance models for count data. Biodivers. Conserv. 21, 1365–1380 (2012).

    Article  Google Scholar 

  129. Yang, Y.-Q. et al. A preliminary study on breeding birds community diversity in Guanshan, Longxian county, Shaanxi province. J. Ecol. Rural Environ. 37, 597–602 (2021).

    Google Scholar 

  130. Zhou, L. et al. The response of mixed-species bird flocks to anthropogenic disturbance and elevational variation in southwest China. Condor 121, duz028 (2019).

    Article  Google Scholar 

  131. Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Article  Google Scholar 

  132. Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. (eds) Birds of the World (Cornell Laboratory of Ornithology, 2022); https://birdsoftheworld.org/bow/home

  133. Bird, J. P. et al. Generation lengths of the world’s birds and their implications for extinction risk. Conserv. Biol. 34, 1252–1261 (2020).

    Article  PubMed  Google Scholar 

  134. Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. BirdLife International. IUCN red list for birds http://datazone.birdlife.org/species/search (2021).

Download references

Acknowledgements

We thank all co-authors of the primary studies that enabled the generation of original data included in this study, Y. Chen for providing advice on spatial data extraction, L. Roudart for granting permission to use their map on agricultural history (Extended Data Fig. 3c, cited from ref. 81), and the following primary-study authors for help with data compilation: X.-B. Gao, D. S. Karp, O. Norfolk, N. O’Dea, B. Phalan, and T. R. S. Raman. We thank members of the ConservationEE research group at Peking University for helpful discussions and support, and M. G. Betts for constructive comments that improved the quality of earlier versions of the article. This project was funded by the National Natural Science Foundation of China (grants 32122057 and 3198810 to F.H.) and the Ministry of Science and Technology of China (grant 2022YFF0802300 to F.H.), and received further support from the Tsinghua University Initiative Scientific Research Program (grant 20223080017 to L.Y.).

Author information

Authors and Affiliations

Authors

Contributions

F.H. conceived the study and led the study design. W.W. compiled species-level abundance data and associated meta-data with assistance from all co-authors. W.W. compiled species trait data with assistance from S.L. and X.M. F.H. designed and coded data analysis with assistance from S.N. and P.R.E., and along with W.W. implemented all analyses. F.H. designed visualization of the results, and along with W.W. implemented visualization of the results. F.H. wrote the first draft of the article with assistance from W.W. and S.N., and all authors contributed to revisions of the article.

Corresponding author

Correspondence to Fangyuan Hua.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 PRISMA plot for data compilation.

Reference information for the two databases and reviews consulted is provided in Extended Data Table 1.

Extended Data Fig. 2 Additional information on the range of data covered by our database.

As with Fig. 2, circles represent datasets of entire avian assemblages for agriculture-forest pairs contributed by each primary study, sized proportional to the number of avian assemblages and colored by (a) MAP, (b) seasonality, and (c) disturbance regime of the study system, as well as (d) remnant forest cover, distance to (e) the nearest continuous forest and (f) native forest surveyed for the agricultural sites in each primary study.

Extended Data Fig. 3 Geographical patterns of three filtering factors across the world.

(a) MAP, (b) temperature seasonality, and (c) agricultural history. Data for temperature seasonality and MAP are from WorldClim 2.139. Map boundaries in c show the centres of origin and areas of expansion of the Neolithic Agricultural Revolution, as reproduced with permission from ref. 81, Monthly Review Press.

Extended Data Fig. 4 Evidence that the influence of filtering on the observed impacts of agricultural deforestation was not an artefact of confounding variables or publication bias.

(ad) The relationship between the four filtering variables and comparison type (left part) or study season (right part). While none of the filtering factors had no strong collinearity with comparison type, for at least MAP and agricultural history, there appeared to be some difference between breeding/all-year versus non-breeding seasons. (e, f) We therefore focused on a subset of data concerning the breeding season only (80% of all data) to visually assess the relationship between assemblage RR with MAP and agricultural history, using the same graph format as in Fig. 3. This subset of data also showed the negative effect of MAP (Fig. 3d) and the positive effect of agricultural history (Fig. 3e) on assemblage RR that were found by formal meta-regressions, suggesting that these effects were not spuriously driven by possible collinearity between filtering variables and study season. (g) Funnel plot for meta-analysis, based on effect size (RR) and study size (sampling effort; measured as the study duration in months). The dotted vertical line represents the mean effect size indicated by meta-analysis (that is corresponding to the mean of Fig. 3A, upper row). (h) The relationship between assemblage RR and the distance of agricultural sites to their matching native forests. We represented distance by the smallest distance from any sampling unit of the agricultural sites to matching native forest sites, with ‘close’ representing distances ≤1 km and ‘far’ those >1 km. This visual assessment showed that greater assemblage RR was not associated with shorter distances between agricultural sites and native forests, corroborating our main findings based on the FGP map data that distance to nearest continuous forest did not drive variation in biodiversity responses to agricultural deforestation.

Extended Data Fig. 5 Diagnostic plots for meta-analyses and meta-regressions corresponding to (a) Fig. 3a, (b) Fig. 3b, and (c) Fig. 3c–e.

For (a) and (b), residual plots (upper) and Q-Q plots (lower) are displayed for each of the meta-analyses concerning all agricultural types (left column), agroforestry (middle column), and open agricultural systems (right column) displayed in Fig. 3a, b. For (c), the residual plot (upper) and Q-Q plot (lower) correspond to the meta-regression global model.

Extended Data Fig. 6 Diagnostic plots for the phylogenetically controlled mixed-effect model on the relationship between species-level RR and predictor variables, run on one randomly drawn phylogenetic tree.

Plots for all variables other than generation length were from a model that dropped generation length, while the plot for generation length was from a model that dropped body mass. Pairs of plots on the trace (left) and density (right) of posterior estimates are displayed for each fixed factor and random factor including residual variance, or ‘Units’ (in dashed box).

Extended Data Table 1 List of syntheses, databases, and other studies consulted for identifying suitable primary studies. These studies are listed by type82,83,84,85,86,87,88,89,90,91,92,93
Extended Data Table 2 Full list of primary studies included in our database. These studies are listed in alphabetical order94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130
Extended Data Table 3 List of species functional traits considered in this study. Traits are listed by type (morphological, life history, and ecological), along with information on their definition, rationale for consideration in our study, and data sources131,132,133,134,135
Extended Data Table 4 Two criteria that must be met simultaneously for classifying species into forest association categories

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, F., Wang, W., Nakagawa, S. et al. Ecological filtering shapes the impacts of agricultural deforestation on biodiversity. Nat Ecol Evol 8, 251–266 (2024). https://doi.org/10.1038/s41559-023-02280-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02280-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing