Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Horizontal gene transfer facilitates the molecular reverse-evolution of antibiotic sensitivity in experimental populations of H. pylori

Abstract

Reversing the evolution of traits harmful to humans, such as antimicrobial resistance, is a key ambition of applied evolutionary biology. A major impediment to reverse evolution is the relatively low spontaneous mutation rates that revert evolved genotypes back to their ancestral state. However, the repeated re-introduction of ancestral alleles by horizontal gene transfer (HGT) could make reverse evolution likely. Here we evolve populations of an antibiotic-resistant strain of Helicobacter pylori in growth conditions without antibiotics while introducing an ancestral antibiotic-sensitive allele by HGT. We evaluate reverse evolution using DNA sequencing and find that HGT facilitates the molecular reverse evolution of the antibiotic resistance allele, and that selection for high rates of HGT drives the evolution of increased HGT rates in low-HGT treatment populations. Finally, we use a theoretical model and carry out simulations to infer how the fitness costs of antibiotic resistance, rates of HGT and effects of genetic drift interact to determine the probability and predictability of reverse evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental evolution with HGT in antibiotic-free conditions.
Fig. 2: Genomic evolution after 200 generations.
Fig. 3: The evolution of multihit genes and increased transformation rates.
Fig. 4: Selection and rate of HGT determine the probability of reverse evolution.

Similar content being viewed by others

Data availability

All data used in this study are available in the supplementary information, and raw sequencing reads have been deposited in GenBank under Bioproject ID: PRJNA907068.

References

  1. Bull, J. J. & Charnov, E. L. On irreversible evolution. Evolution 39, 1149–1155 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Bridgham, J. T., Ortlund, E. A. & Thornton, J. W. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 461, 515–519 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Debray, R., De Luna, N. & Koskella, B. Historical contingency drives compensatory evolution and rare reversal of phage resistance. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msac182 (2022).

  4. Ogbunugafor, C. B. & Hartl, D. A pivot mutation impedes reverse evolution across an adaptive landscape for drug resistance in Plasmodium vivax. Malar. J. 15, 40 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bjorkholm, B. et al. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc. Natl Acad. Sci. USA 98, 14607–14612 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nagaev, I., Bjorkman, J., Andersson, D. I. & Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol. 40, 433–439 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312, 1944–1946 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Rozen, D. E., McGee, L., Levin, B. R. & Klugman, K. P. Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 51, 412–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Beceiro, A. et al. Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob. Agents Chemother. 58, 518–526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).

    Article  PubMed  Google Scholar 

  11. Nang, S. C. et al. Fitness cost of mcr-1-mediated polymyxin resistance in Klebsiella pneumoniae. J. Antimicrob. Chemother. 73, 1604–1610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levin, B. R., Perrot, V. & Walker, N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154, 985–997 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moore, F. B. G., Rozen, D. E. & Lenski, R. E. Pervasive compensatory adaptation in Escherichia coli. Proc. R. Soc. Lond. B 267, 515–522 (2000).

    Article  CAS  Google Scholar 

  14. San Millan, A. et al. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat. Commun. 5, 5208 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Loftie-Eaton, W. et al. Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nat. Ecol. Evol. 1, 1354–1363 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dunai, A. et al. Rapid decline of bacterial drug-resistance in an antibiotic-free environment through phenotypic reversion. eLife https://doi.org/10.7554/eLife.47088 (2019).

  17. Hernando-Amado, S., Laborda, P., Valverde, J. R. & Martinez, J. L. Rapid decline of ceftazidime resistance in antibiotic-free and sublethal environments is contingent on genetic background. Mol. Biol. Evol. 39, msac049 (2022).

  18. Santos-Lopez, A. et al. The roles of history, chance, and natural selection in the evolution of antibiotic resistance. eLife 10, e70676 (2021).

  19. Pennings, P. S., Ogbunugafor, C. B. & Hershberg, R. Reversion is most likely under high mutation supply when compensatory mutations do not fully restore fitness costs. G3 12, jkac190 (2022).

  20. Woods, L. C. et al. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2005331117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nguyen, A. N. T. et al. Recombination resolves the cost of horizontal gene transfer in experimental populations of Helicobacter pylori. Proc. Natl Acad. Sci. USA 119, e2119010119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pletz, M. W. et al. Fluoroquinolone resistance in invasive Streptococcus pyogenes isolates due to spontaneous mutation and horizontal gene transfer. Antimicrob. Agents Chemother. 50, 943–948 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duesberg, C. B. et al. Interspecies recombination occurs frequently in quinolone resistance-determining regions of clinical isolates of Streptococcus pyogenes. Antimicrob. Agents Chemother. 52, 4191–4193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teotonio, H. & Rose, M. R. Perspective: reverse evolution. Evolution 55, 653–660 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Arnold, B. J., Huang, I. T. & Hanage, W. P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Stevenson, C., Hall, J. P., Harrison, E., Wood, A. & Brockhurst, M. A. Gene mobility promotes the spread of resistance in bacterial populations. ISME J. 11, 1930–1932 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maddamsetti, R. & Lenski, R. E. Analysis of bacterial genomes from an evolution experiment with horizontal gene transfer shows that recombination can sometimes overwhelm selection. PLoS Genet. 14, e1007199 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu, Z. Q., Zheng, P. Y. & Yang, P. C. Efflux pump gene hefA of Helicobacter pylori plays an important role in multidrug resistance. World J. Gastroenterol. 14, 5217–5222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ando, T. et al. Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer. Mol. Microbiol. 37, 1052–1065 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Bubendorfer, S. et al. Genome-wide analysis of chromosomal import patterns after natural transformation of Helicobacter pylori. Nat. Commun. 7, 11995 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cooper, T. F., Remold, S. K., Lenski, R. E. & Schneider, D. Expression profiles reveal parallel evolution of epistatic interactions involving the CRP regulon in Escherichia coli. PLoS Genet. https://doi.org/10.1371/Journal.Pgen.0040035 (2008).

  32. Wong, A. & Kassen, R. Parallel evolution and local differentiation in quinolone resistance in Pseudomonas aeruginosa. Microbiology 157, 937–944 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol. 11, e1001490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leu, J. Y., Chang, S. L., Chao, J. C., Woods, L. C. & McDonald, M. J. Sex alters molecular evolution in diploid experimental populations of S. cerevisiae. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1101-1 (2020).

  35. Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166, 1585–1596.e22 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirata, K. et al. Contribution of efflux pumps to clarithromycin resistance in Helicobacter pylori. J. Gastroenterol. Hepatol. 25, S75–S79 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Pal, C., Macia, M. D., Oliver, A., Schachar, I. & Buckling, A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450, 1079–1081 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Wielgoss, S. et al. Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc. Natl Acad. Sci. USA 110, 222–227 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. McDonald, M. J., Hsieh, Y. Y., Yu, Y. H., Chang, S. L. & Leu, J. Y. The evolution of low mutation rates in experimental mutator populations of Saccharomyces cerevisiae. Curr. Biol. 22, 1235–1240 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Ortiz-Barrientos, D., Engelstadter, J. & Rieseberg, L. H. Recombination rate evolution and the origin of species. Trends Ecol. Evol. 31, 226–236 (2016).

    Article  PubMed  Google Scholar 

  45. Winbush, A. & Singh, N. D. Variation in fine-scale recombination rate in temperature-evolved Drosophila melanogaster populations in response to selection. G3 https://doi.org/10.1093/g3journal/jkac208 (2022).

  46. Humbert, O., Dorer, M. S. & Salama, N. R. Characterization of Helicobacter pylori factors that control transformation frequency and integration length during inter-strain DNA recombination. Mol. Microbiol. 79, 387–401 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Vogwill, T. & MacLean, R. C. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol. Appl. 8, 284–295 (2015).

    Article  PubMed  Google Scholar 

  48. Carr, I. M. et al. Inferring relative proportions of DNA variants from sequencing electropherograms. Bioinformatics 25, 3244–3250 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  51. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stecher, G., Tamura, K. & Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Charlesworth, B. & Charlesworth, D. Elements of Evolutionary Genetics (Roberts and Company, 2010).

  55. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

Download references

Acknowledgements

M.J.M. was financially supported by an ARC Discovery Grant (DP220103548) and an NHMRC ideas grant (APP1186140).

Author information

Authors and Affiliations

Authors

Contributions

M.J.M. conceived the experiment; A.N.T.N., R.G., T.K. and M.J.M. designed experiments; A.N.T.N. performed experiments; A.N.T.N. carried out sequencing and data analysis; T.C. developed the theory; T.C. and A.N.T.N. performed simulations; A.N.T.N., T.C. and M.J.M. carried out data visualization. All authors wrote the paper.

Corresponding authors

Correspondence to Tim Connallon or Michael J. McDonald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Replicate transformation efficiency assays.

Transformation efficiency assays for CH426 (purple) and gene deletion mutants for mod3(turquoise) and mod5 (yellow). The assay was repeated three times (N = 3 biologically independent replicates) to account for day and plating effects (A-C). Each coloured dot is an independent plating count for a replicate transformation experiment, empty circles show the mean. Lower bound for the confidence interval not shown where it cannot fit onto the log scale due to being very small, or less than zero.

Extended Data Fig. 2 Accepted parameter values for Approximate Bayesian rejection sampling.

For simulations of a Wright-Fisher model with transformation, selection and drift (grey circles: n = 500 accepted parameter combinations). The black circles and whiskers show the mean and 95% confidence intervals for the two parameters in the accepted parameter sets. The parameter \(\gamma\) denotes the transformation rate relevant to CH428 populations.

Supplementary information

Reporting Summary

Supplementary Data 1

Supplementary Tables 1–8 with raw data and reporting on statistical tests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, A.N.T., Gorrell, R., Kwok, T. et al. Horizontal gene transfer facilitates the molecular reverse-evolution of antibiotic sensitivity in experimental populations of H. pylori. Nat Ecol Evol 8, 315–324 (2024). https://doi.org/10.1038/s41559-023-02269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02269-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing