Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Community composition and the environment modulate the population dynamics of type VI secretion in human gut bacteria

Abstract

Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of great importance; however, knowledge of the biogeographical and ecological relationships between physically interacting taxa is limited. Interbacterial antagonism may play an important role in gut community dynamics, yet the conditions under which antagonistic behaviour is favoured or disfavoured by selection in the gut are not well understood. Here, using genomics, we show that a species-specific type VI secretion system (T6SS) repeatedly acquires inactivating mutations in Bacteroides fragilis in the human gut. This result implies a fitness cost to the T6SS, but we could not identify laboratory conditions under which such a cost manifests. Strikingly, experiments in mice illustrate that the T6SS can be favoured or disfavoured in the gut depending on the strains and species in the surrounding community and their susceptibility to T6SS antagonism. We use ecological modelling to explore the conditions that could underlie these results and find that community spatial structure modulates interaction patterns among bacteria, thereby modulating the costs and benefits of T6SS activity. Our findings point towards new integrative models for interrogating the evolutionary dynamics of type VI secretion and other modes of antagonistic interaction in microbiomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The GA3 T6SS is associated with altered composition of the human gut microbiota.
Fig. 2: Recurrent evolutionary loss of the GA3 T6SS from B. fragilis.
Fig. 3: Mouse colonization reveals a fitness cost of the B. fragilis GA3 T6SS.
Fig. 4: Cocolonization with a sensitive strain alters producer–resistant strain dynamics in mice.
Fig. 5: Reaction–diffusion model reveals local and spatial dynamics of T6SS producer, resistant and sensitive genotypes.
Fig. 6: Individual-based biofilm simulations suggest dispersal-recolonization regimes can dictate selective loss of T6SS.

Similar content being viewed by others

Data availability

The amplicon sequencing data generated in this study are publicly available through the Sequence Read Archive at the National Center for Biotechnology Information (NCBI) under BioProject accession number PRJNA986820. Source data are provided with this paper.

Code availability

Detailed analysis scripts are available at https://github.com/BenRossLab/T6SS-Loss.

References

  1. Young, V. B. The role of the microbiome in human health and disease: an introduction for clinicians. Brit. Med. J. 356, j831 (2017).

    Article  PubMed  Google Scholar 

  2. Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R. & Blaser, M. J. Role of the microbiome in human development. Gut 68, 1108–1114 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  Google Scholar 

  7. Sorbara, M. T. & Pamer, E. G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20, 365–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Coyte, K. Z. & Rakoff-Nahoum, S. Understanding competition and cooperation within the mammalian gut microbiome. Curr. Biol. 29, R538–R544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mondragon-Palomino, O. et al. Three-dimensional imaging for the quantification of spatial patterns in microbiota of the intestinal mucosa. Proc. Natl Acad. Sci. USA 119, e2118483119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, C., Yang, X. & Shen, X. Confirmed and potential roles of bacterial T6SSs in the intestinal ecosystem. Front. Microbiol. 10, 1484 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anderson, M. C., Vonaesch, P., Saffarian, A., Marteyn, B. S. & Sansonetti, P. J. Shigella sonnei encodes a functional T6SS used for interbacterial competition and niche occupancy. Cell Host Microbe 21, 769–776 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Sana, T. G. et al. Salmonella typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc. Natl Acad. Sci. USA 113, E5044–E5051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Serapio-Palacios, A. et al. Type VI secretion systems of pathogenic and commensal bacteria mediate niche occupancy in the gut. Cell Rep. 39, 110731 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Russell, A. B. et al. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16, 227–236 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chatzidaki-Livanis, M., Geva-Zatorsky, N. & Comstock, L. E. Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc. Natl Acad. Sci. USA 113, 3627–3632 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Bayona, L., Coyne, M. J. & Comstock, L. E. Mobile Type VI secretion system loci of the gut Bacteroidales display extensive intra-ecosystem transfer, multi-species spread and geographical clustering. PLoS Genet. 17, e1009541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hecht, A. L. et al. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 17, 1281–1291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Verster, A. J. et al. The landscape of type VI secretion across human gut microbiomes reveals its role in community composition. Cell Host Microbe 22, 411–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wexler, A. G. et al. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc. Natl Acad. Sci. USA 113, 3639–3644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ross, B. D. et al. Human gut bacteria contain acquired interbacterial defence systems. Nature 575, 224–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coyne, M. J., Roelofs, K. G. & Comstock, L. E. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics 17, 58 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Silverman, J. D., Washburne, A. D., Mukherjee, S. & David, L. A. A phylogenetic transform enhances analysis of compositional microbiota data. eLife 6, e21887 (2017).

  33. Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pudlo, N. A. et al. Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans. mBio 6, e01282–15 (2015).

  36. Pierce, J. V. & Bernstein, H. D. Genomic diversity of enterotoxigenic strains of Bacteroides fragilis. PLoS ONE 11, e0158171 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Speare, L., Smith, S., Salvato, F., Kleiner, M. & Septer, A. N. Environmental viscosity modulates interbacterial killing during habitat transition. mBio 11, e03060–19 (2020).

  38. Frank, S. A. Spatial polymorphism of bacteriocins and other allelopathic traits. Evolut. Ecol. 8, 369–386 (1994).

    Article  Google Scholar 

  39. Gardner, A. & West, S. A. Spite and the scale of competition. J. Evol. Biol. 17, 1195–1203 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Gardner, A., West, S. A. & Buckling, A. Bacteriocins, spite and virulence. Proc. Biol. Sci. 271, 1529–1535 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bucci, V., Nadell, C. D. & Xavier, J. B. The evolution of bacteriocin production in bacterial biofilms. Am. Nat. 178, E162–E173 (2011).

    Article  PubMed  Google Scholar 

  42. Durrett, R. & Levin, S. Allelopathy in spatially distributed populations. J. Theor. Biol. 185, 165–171 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature 418, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Reichenbach, T., Mobilia, M. & Frey, E. Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games. Nature 448, 1046–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Schreiber, S. J. & Killingback, T. P. Spatial heterogeneity promotes coexistence of rock–paper–scissors metacommunities. Theor. Popul. Biol. 86, 1–11 (2013).

    Article  PubMed  Google Scholar 

  46. Biernaskie, J. M., Gardner, A. & West, S. A. Multicoloured greenbeards, bacteriocin diversity and the rock–paper–scissors game. J. Evol. Biol. 26, 2081–2094 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Liao, M. J., Din, M. O., Tsimring, L. & Hasty, J. Rock–paper–scissors: engineered population dynamics increase genetic stability. Science 365, 1045–1049 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mark Welch, J. L., Hasegawa, Y., McNulty, N. P., Gordon, J. I. & Borisy, G. G. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc. Natl Acad. Sci. USA 114, E9105–E9114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Earle, K. A. et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18, 478–488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McNally, L. et al. Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat. Commun. 8, 14371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Granato, E. T., Smith, W. P. J. & Foster, K. R. Collective protection against the type VI secretion system in bacteria. ISME J. 17, 1052–1062 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Smith, W. P. J. et al. The evolution of tit-for-tat in bacteria via the type VI secretion system. Nat. Commun. 11, 5395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith, W. P. J. et al. The evolution of the type VI secretion system as a disintegration weapon. PLoS Biol. 18, e3000720 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Borenstein, D. B., Ringel, P., Basler, M. & Wingreen, N. S. Established microbial colonies can survive type VI secretion assault. PLoS Comput. Biol. 11, e1004520 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nadell, C. D., Xavier, J. B., Levin, S. A. & Foster, K. R. The evolution of quorum sensing in bacterial biofilms. PLoS Biol. 6, e14 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Simmons, E. L. et al. Biofilm structure promotes coexistence of phage-resistant and phage-susceptible bacteria. mSystems 5, e00877–19 (2020).

  58. Simmons, E. L., Drescher, K., Nadell, C. D. & Bucci, V. Phage mobility is a core determinant of phage-bacteria coexistence in biofilms. ISME J. 12, 531–543 (2018).

    Article  PubMed  Google Scholar 

  59. Hellweger, F. L., Clegg, R. J., Clark, J. R., Plugge, C. M. & Kreft, J. U. Advancing microbial sciences by individual-based modelling. Nat. Rev. Microbiol. 14, 461–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Unni, R., Pintor, K. L., Diepold, A. & Unterweger, D. Presence and absence of type VI secretion systems in bacteria. Microbiology 168, 001151 (2022).

  61. Drebes Dorr, N. C. et al. Single nucleotide polymorphism determines constitutive versus inducible type VI secretion in Vibrio cholerae. ISME J. 16, 1868–1872 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kostiuk, B. et al. Type VI secretion system mutations reduced competitive fitness of classical Vibrio cholerae biotype. Nat. Commun. 12, 6457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Perault, A. I. et al. Host adaptation predisposes Pseudomonas aeruginosa to Type VI secretion system-mediated predation by the Burkholderia cepacia complex. Cell Host Microbe 28, 534–547 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Donaldson, G. P. et al. Spatially distinct physiology of Bacteroides fragilis within the proximal colon of gnotobiotic mice. Nat. Microbiol. 5, 746–756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Asnicar, F. et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2, e00164–16 (2017).

  66. Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bacic, M. K. & Smith, C. J. Laboratory maintenance and cultivation of bacteroides species. Curr. Protoc. Microbiol. 9, 13C.1.1–13C.1.21 (2008).

  69. Lim, B., Zimmermann, M., Barry, N. A. & Goodman, A. L. Engineered regulatory systems modulate gene expression of human commensals in the gut. Cell 169, 547–558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Degnan, P. H., Barry, N. A., Mok, K. C., Taga, M. E. & Goodman, A. L. Human gut microbes use multiple transporters to distinguish vitamin B(1)(2) analogs and compete in the gut. Cell Host Microbe 15, 47–57 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Koropatkin, N. M., Martens, E. C., Gordon, J. I. & Smith, T. J. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16, 1105–1115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garcia-Bayona, L. & Comstock, L. E. Streamlined genetic manipulation of diverse bacteroides and parabacteroides isolates from the human gut microbiota. mBio 10, e01762–19 (2019).

  73. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Beghini, F. et al. Integrating taxonomic, functional and strain-level profiling of diverse microbial communities with bioBakery 3. eLife 10, e65088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oksanen, J. et al. vegan: Community ecology package. R package version 2.6-2 (2022).

  80. Staley, C. et al. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome 5, 87 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weber, B. S., Ly, P. M., Irwin, J. N., Pukatzki, S. & Feldman, M. F. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proc. Natl Acad. Sci. USA 112, 9442–9447 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Benjamino, J., Lincoln, S., Srivastava, R. & Graf, J. Low-abundant bacteria drive compositional changes in the gut microbiota after dietary alteration. Microbiome 6, 86 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Crank, J. & Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Camb. Philos. Soc. 43, 50–67 (1947).

    Article  Google Scholar 

  91. Xavier Jde, B., Picioreanu, C. & van Loosdrecht, M. C. A general description of detachment for multidimensional modelling of biofilms. Biotechnol. Bioeng. 91, 651–669 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of Dartmouth College Joint Evolutionary Microbiology Meeting and Microbiology and Microbial Pathogenesis (M2P2) communities and J. Mougous for feedback on this work. We also thank N. Pudlo and E. Martens for technical advice, BENEO for providing Synergy inulin, H. Bernstein for anti-TssD and A. Goodman for providing B. fragilis strains and plasmids. This work was supported by start-up funding from Dartmouth College Geisel School of Medicine and NIH grants R00GM129874 and R35GM142685 to B.D.R.; NSF grant IOS 2017879, Simons Foundation award no. 826672 and HFSP award number RGY0077/2020 to C.D.N.; NIH P20 GM130454 to D.S.; and the Dartmouth College BioMT Core funded by P20GM113132.

Author information

Authors and Affiliations

Authors

Contributions

B.D.R., C.D.N. and D.S. conceived of this work. S.R., E.L.S., A.J.V., D.S., E.A.M. and D.B.R. developed the methodology. S.R., E.L.S., A.J.V., E.A.M., D.B.R., E.T., K.S. and D.S. undertook the investigation. S.R., E.L.S., A.J.V., E.A.M. and D.S. produced the visualization. B.D.R., D.S. and C.D.N. were responsible for supervision. B.D.R., S.R., A.J.V., C.D.N. and D.S. wrote the original draft and B.D.R., S.R., E.L.S., A.J.V., E.A.M., D.S. and C.D.N. were involved in reviewing and editing the final manuscript.

Corresponding author

Correspondence to Benjamin D. Ross.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Abrogation of T6SS activity does not provide a fitness benefit to B. fragilis under laboratory conditions growing on mono and di-saccharide as carbon source.

Growth curves and solid growth in mono and coculture for the producer and resistant strains subjected to growth on different sole carbon sources (mono and di-saccharide) in defined minimal broth or solid agar media, including D-fructose (a), D-galactose (b), D-xylose (c) and sucrose (d). For solid agar growth coculture, producer and resistant strains were mixed at a 1:1 ratio by OD600, inoculated in high-density spots before being harvested for enumeration of colony-forming units by plating on BHIS supplemented with either erythromycin or tetracycline. Two-sided Mann-Whitney tests at each timepoint indicated no significant difference between strains. For liquid experiments, the results are from three biological replicates that each represent the mean of eight technical replicates. For solid growth, results are from six biological replicates from two independent experiments. Data shown represent mean values ± SD.

Source data

Extended Data Fig. 2 Abrogation of T6SS activity does not provide a fitness benefit to B. fragilis under laboratory conditions growing on polysaccharides as carbon source.

The growth of the producer and resistant strains in defined minimal media with different carbon sources (polysaccharide) is shown in liquid and solid (mono and coculture) growth in the different panels. For solid growth, B. fragilis producer strain with ErmR and resistant strain with TetR were grown on defined minimal media with different carbon sources separately (monoculture) and together in a 1:1 ratio (coculture). Each strain was quantified via calculating colony-forming units on BHIS agar plates supplemented with erythromycin or tetracycline. Carbon sources used in defined minimal media included potato starch (a), glycogen (b) and mucin (c). Two-sided Mann-Whitney tests showed no difference between the different strains at each timepoint. For liquid experiments, the results are from three biological replicates that each represent the mean of eight technical replicates. For solid growth, results are from six biological replicates from two independent experiments. Data shown represent mean values ± SD.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, including figure legends, and legends for Tables 1–5.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–5.

Supplementary Data 1

Statistical source data.

Supplementary Data 2

Statistical source data.

Supplementary Data 4

Statistical source data.

Supplementary Data 5

Statistical source data.

Supplementary Data 6

Statistical source data.

Supplementary Data 7

Statistical source data.

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robitaille, S., Simmons, E.L., Verster, A.J. et al. Community composition and the environment modulate the population dynamics of type VI secretion in human gut bacteria. Nat Ecol Evol 7, 2092–2107 (2023). https://doi.org/10.1038/s41559-023-02230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02230-6

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology