Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Why the geosciences are becoming increasingly vital to the interpretation of the human evolutionary record

Abstract

Advanced geoscience techniques are essential to contextualize fossils, artefacts and other archaeologically important material accurately and effectively. Their appropriate use will increase confidence in new interpretations of the fossil and archaeological record, providing important information about the life and depositional history of these materials and so should form an integral component of all human evolutionary studies. Many of the most remarkable recent finds that have transformed the field of human evolution are small and scarce, ranging in size from teeth to strands of DNA, recovered from complex sedimentary environments. Nevertheless, if properly analysed, they hold immense potential to rewrite what we know about the evolution of our species and our closest hominin ancestors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed analytical pathways for microcontextualized geoarchaeological investigation.
Fig. 2: Progress of geoscience techniques applied to the study of human evolution.

Similar content being viewed by others

References

  1. Hendy, J. Ancient protein analysis in archaeology. Sci. Adv. 7, eabb9314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Orlando, L. et al. Ancient DNA analysis. Nat. Rev. Methods Primers 1, 14 (2021).

    Article  CAS  Google Scholar 

  3. Martin, J. M. et al. Drimolen cranium DNH 155 documents microevolution in an early hominin species. Nat. Ecol. Evol. 5, 38–45 (2021).

    Article  PubMed  Google Scholar 

  4. Baab, K. L., McNulty, K. P. & Rohlf, F. J. The shape of human evolution: a geometric morphometrics perspective. Evol. Anthropol. 21, 151–165 (2012).

    Article  PubMed  Google Scholar 

  5. Green, R. E. et al. A draft sequence of the Neanderthal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561, 113–116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patterson, D. B. et al. Comparative isotopic evidence from East Turkana supports a dietary shift within the genus Homo. Nat. Ecol. Evol. 3, 1048–1056 (2019).

    Article  PubMed  Google Scholar 

  11. Joannes-Boyau, R. et al. Elemental signatures of Australopithecus africanus teeth reveal seasonal dietary stress. Nature 572, 112–115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lugli, F. et al. Strontium and stable isotope evidence of human mobility strategies across the Last Glacial Maximum in southern Italy. Nat. Ecol. Evol. 3, 905–911 (2019).

    Article  PubMed  Google Scholar 

  13. Goldberg, P., Holliday, V. T. & Ferring, C. R. (eds) Earth Sciences and Archaeology (Springer Science & Business Media, 2013).

  14. Renfrew, C. in Geoarchaeology: Earth Science and the Past (eds Davidson, D. A. & Shackley, M.L.) 1–5 (Westview Press, 1976).

  15. Butzer, K. W. Archaeology as Human Ecology: Method and Theory for a Contextual Approach (Cambridge Univ. Press, 1982).

  16. Morley, M. W. The geoarchaeology of hominin dispersals to and from tropical Southeast Asia: a review and prognosis. J. Archaeol. Sci. 77, 78–93 (2017).

    Article  Google Scholar 

  17. Goldberg, P., Macphail, R. I., Carey, C. & Zhuang, Y. Practical and Theoretical Geoarchaeology (John Wiley, 2022).

  18. Zerboni, A. Micromorphology reveals in situ Mesolithic living floors and archaeological features in multiphase sites in central Sudan. Geoarchaeology 26, 365–391 (2011).

    Article  Google Scholar 

  19. Hublin, J. J. et al. Initial upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581, 299–302 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Morley, M. W. et al. Hominin and animal activities in the microstratigraphic record from Denisova Cave (Altai Mountains, Russia). Sci. Rep. 9, 13785 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Herries, A. I. et al. Contemporaneity of Australopithecus, Paranthropus and early Homo erectus in South Africa. Science 368, eaaw7293 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Weiner, S. Microarchaeology: Beyond the Visible Archaeological Record (Cambridge Univ. Press 2010).

  23. Mentzer, S. M. Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites. J. Archaeol. Method Theory 21, 616–668 (2014).

    Article  Google Scholar 

  24. Berger Lee, R. et al. Evidence for deliberate burial of the dead by Homo naledi. eLife 12, RP89106 (2023).

    Google Scholar 

  25. Goldberg, P. & Berna, F. Micromorphology and context. Quat. Int. 214, 56–62 (2010).

    Article  Google Scholar 

  26. Schiffer, M. B. Archaeological context and systemic context. Am. Antiq. 37, 156–165 (1972).

    Article  Google Scholar 

  27. IPad Pro is Revolutionizing How Archaeologists Preserve the Ancient History of Pompeii. Apple Newsroom https://www.apple.com/newsroom/2022/09/ipad-pro-is-revolutionizing-how-archaeologists-preserve-the-history-of-pompeii/ (27 September 2022).

  28. Braun, D. R. et al. Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight early technological diversity. Proc. Natl Acad. Sci. USA 116, 11712–11717 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maloney, T. R. et al. Surgical amputation of a limb 31,000 years ago in Borneo. Nature 609, 547–551 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maloney, T. R. et al. A late Pleistocene to Holocene archaeological record from East Kalimantan, Borneo. Quat. Sci. Rev. 277, 107313 (2022).

    Article  Google Scholar 

  31. Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Slon, V. et al. Extended longevity of DNA preservation in Levantine Paleolithic sediments, Sefunim Cave, Israel. Sci. Rep. 12, 14528 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, D. et al. Denisovan DNA in late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau. Science 370, 584–587 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Welker, F. et al. The dental proteome of Homo antecessor. Nature 580, 235–238 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Massilani, D. et al. Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments. Proc. Natl Acad. Sci. USA 119, e2113666118 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Copeland, S. R. et al. Strontium isotope evidence for landscape use by early hominins. Nature 474, 76–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Stewart, B. A. et al. Ostrich eggshell bead strontium isotopes reveal persistent macroscale social networking across late Quaternary southern Africa. Proc. Natl Acad. Sci. USA 117, 6453–6462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ji, Q., Wu, W., Ji, Y., Li, Q. & Ni, X. Late Middle Pleistocene Harbin cranium represents a new Homo species. Innovation 2, 3 (2021).

    Google Scholar 

  39. Duller, G. A. Dating methods: the role of geochronology in studies of human evolution and migration in southeast Asia and Australasia. Prog. Phys. Geogr. 25, 267–276 (2001).

    Google Scholar 

  40. Dennell, R. W. in Southern Asia, Australia and the Search for Human Origins (eds Dennell, R. & Porr, M.) 8–20 (Cambridge Univ. Press, 2014)

  41. Slimak, L. et al. Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. Sci. Adv. 8, eabj9496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duller, G. A. T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 37, 161–165 (2003).

    Article  CAS  Google Scholar 

  43. Greilich, S., Glasmacher, U. A. & Wagner, G. A. Spatially resolved detection of luminescence: a unique tool for archaeochronometry. Naturwissenschaften 89, 371–375 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Fu, X. et al. Beta dose heterogeneity in sediment samples measured using a Timepix pixelated detector and its implications for optical dating of individual mineral grains. Quat. Geochronol. 68, 101254 (2022).

    Article  Google Scholar 

  45. Morley, M. W. et al. Initial micromorphological results from Liang Bua, Flores (Indonesia): site formation processes and hominin activities at the type locality of Homo floresiensis. J. Archaeol. Sci. 77, 125–142 (2017).

    Article  Google Scholar 

  46. Brown, S. et al. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Sci. Rep. 6, 23559 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.W.M., I.M., A.M.K.-M., A.I.R.H., R.J.-B. and K.W. receive funding support from the Australian Research Council (ARC), through Future Fellowships FT180100309 (M.W.M.) and FT220100184 (I.M.), Linkage Project LP210300105 (A.M.K.-M.), and Discovery Projects DP170100056 (A.I.R.H.), DP220100195 (R.J.-B.) and DP170101597 (K.W.). V.C.H. receives funding support through a Flinders International Postgraduate Research Scholarship. A.Z. receives funding support from the SPHeritage Project (MUR Grant FISR2019_00040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike W. Morley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morley, M.W., Moffat, I., Kotarba-Morley, A.M. et al. Why the geosciences are becoming increasingly vital to the interpretation of the human evolutionary record. Nat Ecol Evol 7, 1971–1977 (2023). https://doi.org/10.1038/s41559-023-02215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02215-5

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene