Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Viral but not bacterial community successional patterns reflect extreme turnover shortly after rewetting dry soils

Abstract

As central members of soil trophic networks, viruses have the potential to drive substantial microbial mortality and nutrient turnover. Pinpointing viral contributions to terrestrial ecosystem processes remains a challenge, as temporal dynamics are difficult to unravel in the spatially and physicochemically heterogeneous soil environment. In Mediterranean grasslands, the first rainfall after seasonal drought provides an ecosystem reset, triggering microbial activity during a tractable window for capturing short-term dynamics. Here, we simulated precipitation in microcosms from four distinct dry grassland soils and generated 144 viromes, 84 metagenomes and 84 16S ribosomal RNA gene amplicon datasets to characterize viral, prokaryotic and relic DNA dynamics over 10 days. Vastly different viral communities in each soil followed remarkably similar successional trajectories. Wet-up triggered a significant increase in viral richness, followed by extensive compositional turnover. Temporal succession in prokaryotic communities was much less pronounced, perhaps suggesting differences in the scales of activity captured by viromes (representing recently produced, ephemeral viral particles) and total DNA. Still, differences in the relative abundances of Actinobacteria (enriched in dry soils) and Proteobacteria (enriched in wetted soils) matched those of their predicted phages, indicating viral predation of dominant bacterial taxa. Rewetting also rapidly depleted relic DNA, which subsequently reaccumulated, indicating substantial new microbial mortality in the days after wet-up, particularly of the taxa putatively under phage predation. Production of abundant, diverse viral particles via microbial host cell lysis appears to be a conserved feature of the early response to soil rewetting, and results suggest the potential for ‘Cull-the-Winner’ dynamics, whereby viruses infect and cull but do not decimate dominant host populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dataset overview.
Fig. 2: Richness and viromic DNA yields over the time series.
Fig. 3: Successional patterns across the four soil types for viral compared with prokaryotic communities.
Fig. 4: Temporal trait-based and taxonomic patterns in viral and prokaryotic responses to wet-up across soils.
Fig. 5: Relic DNA abundance and composition over time.

Similar content being viewed by others

Data availability

A detailed version of the viromics laboratory protocol is available at https://protocols.io/view/soil-viromics-protocol-emerson-lab-v1-b7nyrmfw. Raw sequences are available from the NCBI Sequence Read Archive (BioProject PRJNA859194). The databases of dereplicated vOTUs and MAGs are available at https://doi.org/10.5281/zenodo.7510627.

Code availability

Code and processed files needed to replicate the statistical analyses can be found at https://github.com/cmsantosm/WetupViromes.

References

  1. Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Suttle, C. A. Viruses: unlocking the greatest biodiversity on Earth. Genome 56, 542–544 (2013).

    Article  PubMed  Google Scholar 

  5. Emerson, J. B. Soil viruses: a new hope. mSystems 4, e00120–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev. Virol. 4, 201–219 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Pratama, A. A. & van Elsas, J. D. The ‘neglected’ soil virome – potential role and impact. Trends Microbiol. 26, 649–662 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro.2017.87 (2017).

    Article  PubMed  Google Scholar 

  9. Kuzyakov, Y. & Mason-Jones, K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 127, 305–317 (2018).

    Article  CAS  Google Scholar 

  10. Trubl, G., Hyman, P., Roux, S. & Abedon, S. T. Coming-of-age characterization of soil viruses: a user’s guide to virus isolation, detection within metagenomes, and viromics. Soil Syst. 4, 23 (2020).

    Article  CAS  Google Scholar 

  11. Roux, S. & Emerson, J. B. Diversity in the soil virosphere: to infinity and beyond? Trends Microbiol. 30, 1025–1035 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Hillary, L. S., Adriaenssens, E. M., Jones, D. L. & McDonald, J. E. RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels. ISME Commun. 2, 34 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Starr, E. P., Nuccio, E. E., Pett-Ridge, J., Banfield, J. F. & Firestone, M. K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc. Natl Acad. Sci. USA 116, 25900–25908 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ter Horst, A. M. et al. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. Microbiome 9, 233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Santos-Medellin, C. et al. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. ISME J. https://doi.org/10.1038/s41396-021-00897-y (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Santos-Medellín, C. et al. Spatial turnover of soil viral populations and genotypes overlain by cohesive responses to moisture in grasslands. Proc. Natl Acad. Sci. USA 119, e2209132119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Durham, D. M. et al. Substantial differences in soil viral community composition within and among four Northern California habitats. ISME Commun. 2, 100 (2022).

    Article  PubMed Central  Google Scholar 

  18. Nicolas, A. M. et al. Isotope-enrichment reveals active viruses follow microbial host dynamics during rewetting of a California grassland soil. Preprint at bioRxiv https://doi.org/10.1101/2022.09.30.510406 (2022).

  19. Lee, S. et al. Methane-derived carbon flows into host-virus networks at different trophic levels in soil. Proc. Natl Acad. Sci. USA 118, e2105124118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, S., Sieradzki, E. T., Nicol, G. W. & Hazard, C. Propagation of viral genomes by replicating ammonia-oxidising archaea during soil nitrification. ISME J. 17, 309–314 (2023).

    CAS  PubMed  Google Scholar 

  21. Trubl, G. et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome 9, 208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cornell Carolyn, R. et al. Temporal changes of virus-like particle abundance and metagenomic comparison of viral communities in cropland and prairie soils. mSphere 6, e0116020 (2021).

    PubMed  PubMed Central  Google Scholar 

  23. Roy, K. et al. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. Front. Microbiol. 11, 1494 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barnard, R. L., Blazewicz, S. J. & Firestone, M. K. Rewetting of soil: revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 147, 107819 (2020).

    Article  CAS  Google Scholar 

  25. Barnard, R. L., Osborne, C. A. & Firestone, M. K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 7, 2229–2241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kieft, T. L., Soroker, E. & Firestone, M. K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol. Biochem. 19, 119–126 (1987).

    Article  Google Scholar 

  27. Placella, S. A. & Firestone, M. K. Transcriptional response of nitrifying communities to wetting of dry soil. Appl. Environ. Microbiol. 79, 3294–3302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fierer, N., Schimel, J. P. & Holden, P. A. Influence of drying–rewetting frequency on soil bacterial community structure. Microb. Ecol. 45, 63–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Xiang, S.-R., Doyle, A., Holden, P. A. & Schimel, J. P. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol. Biochem. 40, 2281–2289 (2008).

    Article  CAS  Google Scholar 

  30. Aanderud, Z. T. & Lennon, J. T. Validation of heavy-water stable isotope probing for the characterization of rapidly responding soil bacteria. Appl. Environ. Microbiol. 77, 4589–4596 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Placella, S. A., Brodie, E. L. & Firestone, M. K. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc. Natl Acad. Sci. USA 109, 10931–10936 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aanderud, Z. T., Jones, S. E., Fierer, N. & Lennon, J. T. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity. Front. Microbiol. 6, 24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Blazewicz, S. J. et al. Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil. ISME J. 14, 1520–1532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sieradzki, E. T. et al. Functional succession of actively growing soil microorganisms during rewetting is shaped by precipitation history. Preprint at bioRxiv https://doi.org/10.1101/2022.06.28.498032 (2022).

  35. Van Goethem, M. W., Swenson, T. L., Trubl, G., Roux, S. & Northen, T. R. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. mBio 10, e02287-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. Sorensen, J. W. et al. DNase treatment improves viral enrichment in agricultural soil viromes. mSystems 6, e0061421 (2021).

    Article  PubMed  Google Scholar 

  37. Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2016).

    Article  PubMed  Google Scholar 

  38. Carini, P. et al. Effects of spatial variability and relic DNA removal on the detection of temporal dynamics in soil microbial communities. mBio 11, e02776-19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lennon, J. T., Muscarella, M. E., Placella, S. A. & Lehmkuhl, B. K. How, when, and where relic DNA affects microbial diversity. mBio 9, e00637-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Corinaldesi, C., Tangherlini, M., Luna, G. M. & Dell’anno, A. Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins. Proc. Biol. Sci. 281, 20133299 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Emerson, J. B., Thomas, B. C., Andrade, K., Heidelberg, K. B. & Banfield, J. F. New approaches indicate constant viral diversity despite shifts in assemblage structure in an Australian hypersaline lake. Appl. Environ. Microbiol. 79, 6755–6764 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Anderson, R. E., Brazelton, W. J. & Baross, J. A. Is the genetic landscape of the deep subsurface biosphere affected by viruses? Front. Microbiol. 2, 219 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Santos, F., Yarza, P., Parro, V., Briones, C. & Antón, J. The metavirome of a hypersaline environment. Environ. Microbiol. 12, 2965–2976 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Article  Google Scholar 

  46. Ter Horst, A. M., Fudyma, J. D., Sones, J. L. & Emerson, J. B. Dispersal, habitat filtering, and eco-evolutionary dynamics as drivers of local and global wetland viral biogeography. ISME J. (in the press).

  47. Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol 3, 870–880 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roux, S. et al. iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023).

  49. Dell’Anno, A. & Danovaro, R. Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 309, 2179 (2005).

    Article  PubMed  Google Scholar 

  50. Lennon, J. T. Diversity and metabolism of marine bacteria cultivated on dissolved DNA. Appl. Environ. Microbiol. 73, 2799–2805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tian, R. et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bouskill, N. J. et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 7, 384–394 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. USA 115, E4284–E4293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Santos-Medellín, C. et al. Prolonged drought imparts lasting compositional changes to the rice root microbiome. Nat. Plants 7, 1065–1077 (2021).

    Article  PubMed  Google Scholar 

  55. Felsmann, K. et al. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany. PLoS ONE 10, e0122539 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).

    Article  Google Scholar 

  57. Crits-Christoph, A., Olm, M. R., Diamond, S., Bouma-Gregson, K. & Banfield, J. F. Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow. ISME J. https://doi.org/10.1038/s41396-020-0655-x (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cho, J.-C. & Tiedje James, M. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66, 5448–5456 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Corinaldesi, C., Dell’Anno, A., Magagnini, M. & Danovaro, R. Viral decay and viral production rates in continental-shelf and deep-sea sediments of the Mediterranean Sea. FEMS Microbiol. Ecol. 72, 208–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Bongiorni, L., Magagnini, M., Armeni, M., Noble, R. & Danovaro, R. Viral production, decay rates, and life strategies along a trophic gradient in the North Adriatic Sea. Appl. Environ. Microbiol. 71, 6644–6650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Noble, R. T. & Fuhrman, J. A. Virus decay and its causes in coastal waters. Appl. Environ. Microbiol. 63, 77–83 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heldal, M. & Bratbak, G. Production and decay of viruses in aquatic environments. Mar. Ecol. Prog. Ser. 72, 205–212 (1991).

    Article  Google Scholar 

  63. Dell’Anno, A., Corinaldesi, C. & Danovaro, R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc. Natl Acad. Sci. USA 112, E2014–E2019 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Levy-Booth, D. J. et al. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 39, 2977–2991 (2007).

    Article  CAS  Google Scholar 

  65. Nuccio, E. E. et al. Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J. 14, 999–1014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hestrin, R. et al. Plant-associated fungi support bacterial resilience following water limitation. ISME J. 16, 2752–2762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Locey, K. J. et al. Dormancy dampens the microbial distance-decay relationship. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Lennon, J. T., den Hollander, F., Wilke-Berenguer, M. & Blath, J. Principles of seed banks and the emergence of complexity from dormancy. Nat. Commun. 12, 4807 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fierer, N. & Lennon, J. T. The generation and maintenance of diversity in microbial communities. Am. J. Bot. 98, 439–448 (2011).

    Article  PubMed  Google Scholar 

  71. Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kimura, M., Jia, Z.-J., Nakayama, N. & Asakawa, S. Ecology of viruses in soils: past, present and future perspectives. Soil Sci. Plant Nutr. 54, 1–32 (2008).

    Article  Google Scholar 

  73. Ghosh, D. et al. Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl. Environ. Microbiol. 74, 495–502 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Pantastico-Caldas, M., Duncan, K. E., Istock, C. A. & Bell, J. A. Population dynamics of bacteriophage and Bacillus subtilis in soil. Ecology 73, 1888–1902 (1992).

    Article  Google Scholar 

  75. Marsh, P. & Wellington, E. M. H. Phage-host interactions in soil. FEMS Microbiol. Ecol. 15, 99–107 (1994).

    Article  CAS  Google Scholar 

  76. Wu, R. et al. DNA viral diversity, abundance, and functional potential vary across grassland soils with a range of historical moisture regimes. mBio 12, e0259521 (2021).

    Article  PubMed  Google Scholar 

  77. Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Muscatt, G., Cook, R., Millard, A., Bending, G. D. & Jameson, E. Ecological and evolutionary patterns of virus-host interactions throughout a grassland soil depth profile. Preprint at bioRxiv https://doi.org/10.1101/2022.12.09.519740 (2022).

  79. Mäntynen, S., Laanto, E., Oksanen, H. M., Poranen, M. M. & Díaz-Muñoz, S. L. Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biol. 11, 210188 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schwartz, D. A., Lehmkuhl, B. K., Lennon, J. T. & Imperiale Michael, J. Phage-encoded sigma factors alter bacterial dormancy. mSphere 7, e0029722 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Göller, P. C., Haro-Moreno, J. M., Rodriguez-Valera, F., Loessner, M. J. & Gómez-Sanz, E. Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil. Microbiome 8, 17 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bushnell, B. BBTools software package (2014); http://sourceforge.net/projects/bbmap

  85. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

  86. Edwards, J., Santos-Medellín, C. & Sundaresan, V. Extraction and 16S rRNA sequence analysis of microbiomes associated with rice roots. BIO-PROTOCOL 8, e2884 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature https://doi.org/10.1038/nature24621 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 5, e3817 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nayfach, S., Camargo, A. P., Eloe-Fadrosh, E., Roux, S. & Kyrpides, N. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. van Dongen, S. M. Graph Clustering by Flow Simulation. Dissertation, Utrecht Univ. (2000).

  99. Schloerke, B. et al. GGally: extension to ‘ggplot2’. R version 2.1.2 https://CRAN.R-project.org/package=GGally (2018).

  100. Skennerton, C. T., Imelfort, M. & Tyson, G. W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 41, e105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  102. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nissen, J. N. et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat. Biotechnol. 39, 555–560 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. R Core Team. R: A Language and Environment for Statistical Computing (2018); https://www.R-project.org/

  109. Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  110. Oksanen, J. et al. vegan: community ecology package. R version 2.5-7 https://CRAN.R-project.org/package=vegan (2018).

  111. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Larsson, J. eulerr: area-proportional Euler and Venn diagrams with ellipses. R version 6.1.1 https://cran.r-project.org/package=eulerr (2020).

  113. Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Baryshnikova, A. In Computational Cell Biology: Methods and Protocols (eds von Stechow, L. & Santos Delgado, A.) 249–268 (Springer New York, 2018).

  116. Csardi, G. et al. The igraph software package for complex network research. InterJournal 1695, 1–9 (2006).

    Google Scholar 

  117. Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: estimated marginal means, aka least-squares means. R version 1.8.3 https://cran.r-project.org/web//packages/emmeans/emmeans.pdf (2018).

  118. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  119. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was predominantly supported by an award from the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomic Science Program, no. DE-SC0020163 (grant to J.P.R., M.K.F. and J.B.E.). Additional support was provided by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomic Science Program, award no. DE-SC0021198 (grant to J.B.E.). Research at Lawrence Livermore National Laboratory was conducted under the auspices of Department of Energy contract DE-AC52-07NA27344. Shotgun metagenomic library construction and high-throughput sequencing were performed by the DNA Technologies and Expression Analysis Core at the UC Davis Genome Center, supported by National Institutes of Health Shared Instrumentation Grant 1S10OD010786-01. We thank the University of California Natural Reserves site directors and staff, including S. Waddell, C. Koehler, J. Clary and J. Bailey, for facilitating access to field sites and associated site information.

Author information

Authors and Affiliations

Authors

Contributions

C.S.-M. and J.B.E. conceived and designed the study with input from S.J.B., J.P.-R. and M.K.F. C.S.-M. performed research and analysed data. C.S.-M. and J.B.E. wrote the paper and all authors reviewed it and approved the final version.

Corresponding author

Correspondence to Joanne B. Emerson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Xiaolong Liang, Paula Dalcin Martins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Soil abiotic profiles and precipitation records.

(a) Hierarchical clustering of soil types based on their abiotic properties. The heatmap shows the z-transformed values of the edaphic variables included in the analysis. (b) Daily precipitation at each of the three field sites preceding, during, and after soil harvesting. Dotted vertical lines mark the dates of soil sample collection. (c) Gravimetric soil moisture content over time across soil types. Points correspond to individual microcosms, and trend lines represent the mean moisture content at each time point. Color indicates whether replicates underwent rewetting or remained dry.

Extended Data Fig. 2 Compositional patterns of prokaryotic communities based on ASV profiles of the 16S rRNA gene from total DNA.

(a) Unconstrained analysis of principal coordinates performed on Bray-Curtis dissimilarities. Colors indicate soil type. (b) Community richness measured as the number of ASVs recovered from soil microcosms: colored points correspond to replicates and colored trend lines represent the mean richness at each collection time point. (c) Unconstrained analyses of principal coordinates performed ASV Bray-Curtis dissimilarities. Analyses were performed independently for each soil type (facets). Colors indicate the collection time point and soil status (dry or wet). (d) Linear regressions between Bray-Curtis similarities and temporal distances in post-wet-up time points for viral (vOTUs in viromes) and prokaryotic (ASVs in total DNA) communities. Points represent pairs of samples, trend lines show the least squares linear regression model, and facets correspond to soil types.

Extended Data Fig. 3 Detection patterns of vOTUs and MAGs identified in this study.

(a-b) Euler diagrams showing the intersections between the sets of (a) vOTUs and (b) MAGs detected in each profiling method.

Extended Data Fig. 4 Viral response to rewetting in Hopland soils collected in different years.

(a) Viral community richness in a complementary viromic survey of dry and rewetted (336 hrs after a laboratory simulation of wet-up) soils harvested from the Hopland site at the end of the 2019 dry season (approximately one year prior to sample collection for the main microcosm experiment in this study). Facets correspond to DNase-treated and untreated viromic profiles. Box boundaries correspond to the 25th and 75th percentile and whiskers indicate the ±1.5x interquartile range. For each time point, we collected samples from n = 3 microcosms. DNase-treated profiles from dry soils could not be generated due to low DNA yields. (b) Daily precipitation at the Hopland site between 2018 and 2021. Dotted vertical lines mark the dates of soil sample collection for the main (2020) and complementary (2019) wet-up experiments reported in this study, as well as the wet-up experiment from 2018 reported in Nicolas et al., 2022. Black horizontal lines highlight the period since the most recent ≥ 5 mm rainfall event preceding each soil sample collection time point. Gaps in the trend line between 2018 and 2019 indicate missing data from the weather station.

Extended Data Fig. 5 Abundance of temperate phages in soil viromes.

(a) Euler diagram displaying the distribution of genomic traits used to identify the set of 1146 vOTUs predicted to be temperate phages. (b, c) Temporal trends of predicted temperate phages (phages putatively capable of lysogeny) and phages not predicted to be temperate in viral communities by soil type. Trends for all vOTUs are separated according to their temperate phage prediction (true = predicted temperate phage, false = not predicted to be temperate). For each time point, panel (b) shows aggregated vOTU relative abundances (based on read mapping-derived coverage), and panel (c) shows the percentage of total vOTUs detected. Points are individual samples, and trend lines track the mean values among replicates.

Extended Data Fig. 6 Differences in temporal turnover of viral and prokaryotic communities.

a) Percentage of MAGs (left) and vOTUs (right) detected at each occupancy level (number of post-wet-up time points) in total metagenomes and viromes, respectively. (b) Pairwise Jaccard similarities of MAG communities profiled in total metagenomes (left) and vOTU communities profiled in DNase-treated and untreated viromes (right). The x-axis and y-axis are the same, such that the diagonal from lower left to upper right for each facet indicates pairwise community similarity among technical replicates, and other comparisons are between microcosms at different time points.

Extended Data Fig. 7 Abundance of temporally dynamic vOTUs in soil viromes.

(a) Changes in the aggregated abundances of vOTUs in each trend group. (b) Upset plot displaying the temporal groups assigned to vOTUs detected as differentially abundant across multiple soils: light gray vertical bars correspond to vOTUs displaying the same temporal trend across soil types, while dark gray vertical bars correspond to vOTUs displaying different temporal trends across soil types.

Extended Data Fig. 8 Viral taxonomic network analyses.

(a) Distribution of local network neighborhoods with a significant overrepresentation (blue points) or underrepresentation (red points) of vOTUs assigned to a particular trend group (adjusted p-value < 0.05, hypergeometric test). Each colored point denotes the center of a significant local neighborhood, and the color gradient indicates the extent of the significance of the overrepresentation or underrepresentation of the temporal group in that neighborhood. (b) Distribution of predicted hosts in the gene-sharing network. For each vOTU (node), the predicted host phylum is indicated. For (a, b), the network layout was constructed with the Fruchterman-Reingold algorithm, based on pairs of vOTUs (nodes) with a significant overlap in their predicted protein content. (c) Distribution of predicted host phyla in each of three vOTU temporal groups. For the subset of vOTUs with an assigned host, cell color indicates percentage of vOTUs classified as infecting a particular phylum in each temporal trait group. (d) Set of predicted host phyla significantly overrepresented or underrepresented in each vOTU temporal group (adjusted p-value < 0.05, hypergeometric test).

Extended Data Fig. 9 Taxonomic trends displayed by the set of temporally dynamic MAGs.

(a) Taxonomic composition of MAG temporal groups. (b) Set of MAG phyla significantly overrepresented or underrepresented in each MAG temporal group (adjusted p-value < 0.05, hypergeometric test).

Extended Data Fig. 10 Taxonomic trends displayed by the set of temporally dynamic ASVs.

(a) Temporal trends in the abundances of differentially abundant ASVs in total DNA profiles from all four soils. Colored trend lines represent the z-transformed mean abundances of single ASVs across time points, bold black trend lines correspond to the mean abundances. (b) Taxonomic composition of ASVs temporal groups. (c) Set of ASV phyla significantly overrepresented or underrepresented in each ASV temporal group (adjusted p-value < 0.05, hypergeometric test).

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Medellín, C., Blazewicz, S.J., Pett-Ridge, J. et al. Viral but not bacterial community successional patterns reflect extreme turnover shortly after rewetting dry soils. Nat Ecol Evol 7, 1809–1822 (2023). https://doi.org/10.1038/s41559-023-02207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02207-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing