Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Derived faunivores are the forerunners of major synapsid radiations

Abstract

Evolutionary radiations generate most of Earth’s biodiversity, but are there common ecomorphological traits among the progenitors of radiations? In Synapsida (the mammalian total group), ‘small-bodied faunivore’ has been hypothesized as the ancestral state of most major radiating clades, but this has not been quantitatively assessed across multiple radiations. To examine macroevolutionary patterns in a phylogenetic context, we generated a time-calibrated metaphylogeny (‘metatree’) comprising 1,888 synapsid species from the Carboniferous through the Eocene (305–34 Ma) based on 269 published character matrices. We used comparative methods to investigate body size and dietary evolution during successive synapsid radiations. Faunivory is the ancestral dietary regime of each major synapsid radiation, but relatively small body size is only established as the common ancestral state of radiations near the origin of Mammaliaformes in the Late Triassic. The faunivorous ancestors of synapsid radiations typically have numerous novel characters compared with their contemporaries, and these derived traits may have helped them to survive faunal turnover events and subsequently radiate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Testing the hypothesis that small faunivores are the forerunners of synapsid radiations using diet and body size patterns through time.
Fig. 2: Diet and jaw length plotted against patristic distance for each of the five major synapsid radiations.

Similar content being viewed by others

Data availability

All data used in this study are available through the main tables and the Supplementary Information.

Code availability

A simplified version of the R code used for this study is available as a supplementary text file. The code used to create the metatree is available at https://github.com/graemetlloyd/metatree.

References

  1. Rabosky, D. L. & Lovette, I. J. Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62, 1866–1875 (2008).

    Article  PubMed  Google Scholar 

  2. Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl Acad. Sci. USA 106, 13410–13414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O’Leary, M. A. et al. The placental mammal ancestor and the post-K–Pg radiation of placentals. Science 339, 662–667 (2013).

    Article  PubMed  Google Scholar 

  4. Grossnickle, D. M. & Newham, E. Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary. Proc. R. Soc. B 283, 20160256 (2016).

    Article  PubMed Central  Google Scholar 

  5. Bouchenak-Khelladi, Y., Onstein, R. E., Xing, Y., Schwery, O. & Linder, H. P. On the complexity of triggering evolutionary radiations. New Phytol. 207, 313–326 (2015).

    Article  PubMed  Google Scholar 

  6. Cope, E. D. The Primary Factors of Organic Evolution (Open Court Publishing, 1896).

  7. Stanley, S. M. An explanation for Cope’s rule. Evolution 27, 1–26 (1973).

    Article  PubMed  Google Scholar 

  8. Pough, F. H. Lizard energetics and diet. Ecology 54, 837–844 (1973).

    Article  Google Scholar 

  9. Gaulin, S. J. A Jarman/Bell model of primate feeding niches. Hum. Ecol. 7, 1–20 (1979).

    Article  Google Scholar 

  10. Tomiya, S. Body size and extinction risk in terrestrial mammals above the species level. Am. Nat. 182, E196–E214 (2013).

    Article  PubMed  Google Scholar 

  11. Zanno, L. E. & Makovicky, P. J. No evidence for directional evolution of body mass in herbivorous theropod dinosaurs. Proc. R. Soc. Lond. B 280, 20122526 (2013).

    Google Scholar 

  12. Reisz, R. R. & Fröbisch, J. The oldest caseid synapsid from the Late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates. PLoS ONE 9, e94518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Price, S. A. & Hopkins, S. S. The macroevolutionary relationship between diet and body mass across mammals. Biol. J. Linn. Soc. 115, 173–184 (2015).

    Article  Google Scholar 

  14. Pineda-Munoz, S., Evans, A. R. & Alroy, J. The relationship between diet and body mass in terrestrial mammals. Paleobiology 42, 659–669 (2016).

    Article  Google Scholar 

  15. Brocklehurst, N. & Brink, K. S. Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous. FACETS 2, 68–84 (2017).

    Article  Google Scholar 

  16. Grossnickle, D. M. Feeding ecology has a stronger evolutionary influence on functional morphology than on body mass in mammals. Evolution 74, 610–628 (2020).

    Article  PubMed  Google Scholar 

  17. Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, 1944).

  18. Liow, L. H. A test of Simpson’s “Rule of the Survival of the Relatively Unspecialized” using fossil crinoids. Am. Nat. 164, 431–443 (2004).

    Article  PubMed  Google Scholar 

  19. Liow, L. H. Lineages with long durations are old and morphologically average: an analysis using multiple datasets. Evolution 61, 885–901 (2007).

    Article  PubMed  Google Scholar 

  20. Smits, P. D. Expected time-invariant effects of biological traits on mammal species duration. Proc. Natl Acad. Sci. USA 112, 13015–13020 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raia, P. & Fortelius, M. Cope’s law of the unspecialized, Cope’s rule, and weak directionality in evolution. Evol. Ecol. Res. 15, 747–756 (2013).

    Google Scholar 

  22. Raia, P. et al. Progress to extinction: increased specialisation causes the demise of animal clades. Sci. Rep. 6, 30965 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Angielczyk, K.D. & Kammerer, C. F. in Handbook of Zoology: Mammalia: Mammalian Evolution, Diversity and Systematics (eds Zachos, F. E. & Asher, R. J.) 117–198 (De Gruyter, 2018).

  24. Osborn, H. F. The law of adaptive radiation. Am. Nat. 36, 353–363 (1902).

    Article  Google Scholar 

  25. Broom, R. 1932. The Mammal-like Reptiles of South Africa and the Origin of Mammals (H. F. & G. Witherby, 1932).

  26. Hopson, J. A. The origin and adaptive radiation of mammal-like reptiles and nontherian mammals. Ann. N. Y. Acad. Sci. 167, 199–216 (1969).

    Article  Google Scholar 

  27. Kemp, T. S. The Origin and Evolution of Mammals (Oxford Univ. Press, 2005).

  28. Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (2019).

    Article  PubMed  Google Scholar 

  29. Alroy, J. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280, 731–734 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Raia, P., Carotenuto, F., Passaro, F., Fulgione, D. & Fortelius, M. Ecological specialization in fossil mammals explains Cope’s rule. Am. Nat. 179, 328–337 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Polly, P. D. Cope’s rule. Science 282, 50–52 (1998).

    Article  PubMed  Google Scholar 

  32. Lloyd, G. T. et al. Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight, and crown birds. Biol. Lett. 12, 20160609 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wilson, G. P. et al. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483, 457–460 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Grossnickle, D. M. & Polly, P. D. Mammal disparity decreases during the Cretaceous angiosperm radiation. Proc. R. Soc. Lond. B 280, 20132110 (2013).

    Google Scholar 

  35. Hu, Y., Meng, J., Wang, Y. & Li, C. Large Mesozoic mammals fed on young dinosaurs. Nature 433, 149–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Luo, Z.-X. et al. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548, 326–329 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, M., Strömberg, C. A. & Wilson, G. P. Assembly of modern mammal community structure driven by Late Cretaceous dental evolution, rise of flowering plants, and dinosaur demise. Proc. Natl Acad. Sci. USA 116, 9931–9940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morales-García, N. M., Gill, P. G., Janis, C. M. & Rayfield, E. J. Jaw shape and mechanical advantage are indicative of diet in Mesozoic mammals. Commun. Biol. 4, 242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Krause, D. W. et al. First cranial remains of a gondwanatherian mammal reveal remarkable mosaicism. Nature 515, 512–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Harper, T., Parras, A. & Rougier, G. W. Reigitherium (Meridiolestida, Mesungulatoidea) an enigmatic Late Cretaceous mammal from Patagonia, Argentina: morphology, affinities, and dental evolution.J. Mamm. Evol. 26, 447–478 (2019).

    Article  Google Scholar 

  41. Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1986).

  42. Angielczyk, K. D. & Walsh, M. L. Patterns in the evolution of nares size and secondary palate length in anomodont therapsids (Synapsida): implications for hypoxia as a cause of end-Permian tetrapod extinctions. J. Paleontol. 82, 528–542 (2008).

    Article  Google Scholar 

  43. Huttenlocker, A. K. Body size reductions in nonmammalian eutheriodont therapsids (Synapsida) during the end-Permian mass extinction. PLoS ONE 9, e87553 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Grunert, H. R., Brocklehurst, N. & Fröbisch, J. Diversity and disparity of Therocephalia: macroevolutionary patterns through two mass extinctions. Sci. Rep. 9, 5063 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wilson, G. P. Mammals across the K/Pg boundary in northeastern Montana, USA: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling. Paleobiology 39, 429–469 (2013).

    Article  Google Scholar 

  46. Tolchard, F. et al. A new large gomphodont from the Triassic of South Africa and its implications for Gondwanan biostratigraphy. J. Vertebr. Paleontol. 41, e1929265 (2021).

    Article  Google Scholar 

  47. Sookias, R. B., Butler, R. J. & Benson, R. B. J. Rise of dinosaurs reveals major body-size transitions are driven by passive processes of trait evolution. Proc. R. Soc. Lond. B 279, 2180–2187 (2012).

    Google Scholar 

  48. Sidor, C. A. Simplification as a trend in synapsid cranial evolution. Evolution 55, 1419–1442 (2001).

    CAS  PubMed  Google Scholar 

  49. Sidor, C. A. Evolutionary trends and the origin of the mammalian lower jaw. Paleobiology 29, 605–640 (2003).

    Article  Google Scholar 

  50. Kielan-Jaworowska, Z., Cifelli, R. L. & Luo, Z.-X. Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure (Columbia Univ. Press, 2004).

  51. Rowe, T. B., Macrini, T. E. & Luo, Z.-X. Fossil evidence on origin of the mammalian brain. Science 332, 955–957 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Benoit, J., Abdala, F., Manger, P. R. & Rubidge, B. S. The sixth sense in mammalian forerunners: variability of the parietal foramen and the evolution of the pineal eye in South African Permo-Triassic eutheriodont therapsids. Acta Palaeontol. Pol. 61, 777–789 (2016).

    Google Scholar 

  53. Rey, K. et al. Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades. eLife 6, e28589 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guignard, M. L., Martinelli, A. G. & Soares, M. B. Reassessment of the postcranial anatomy of Prozostrodon brasiliensis and implications for postural evolution of non-mammaliaform cynodonts. J. Vertebr. Paleontol. 38, e1511570 (2018).

    Article  Google Scholar 

  55. Guignard, M. L., Martinelli, A. G. & Soares, M. B. The postcranial anatomy of Brasilodon quadrangularis and the acquisition of mammaliaform traits among non-mammaliaform cynodonts. PLoS ONE 14, e0216672 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Benoit, J. et al. The evolution of the maxillary canal in Probainognathia (Cynodontia, Synapsida): reassessment of the homology of the infraorbital foramen in mammalian ancestors. J. Mamm. Evol. 27, 329–348 (2020).

    Article  Google Scholar 

  57. Jones, K. E., Gonzalez, S., Angielczyk, K. D. & Pierce, S. E. Regionalization of the axial skeleton predates functional adaptation in the forerunners of mammals. Nat. Ecol. Evol. 4, 470–478 (2020).

    Article  PubMed  Google Scholar 

  58. Luo, Z.-X. & Manley, G. A. in The Senses: A Comprehensive Reference Vol. 2 (eds Fritzsch, B. & Grothe, B.) 207–252 (Elsevier Academic Press, 2020).

  59. Araújo, R. et al. Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy. Nature 607, 726–731 (2022).

    Article  PubMed  Google Scholar 

  60. Lautenschlager, S. et al. The role of miniaturization in the evolution of the mammalian jaw and middle ear. Nature 561, 533–537 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Hopson, J. A. Endothermy, small size, and the origin of mammalian reproduction. Am. Nat. 107, 446–452 (1973).

    Article  Google Scholar 

  62. McNab, B. K. The evolution of endothermy in the phylogeny of mammals. Am. Nat. 112, 1–21 (1978).

    Article  Google Scholar 

  63. West, G. B., Woodruff, W. H. & Brown, J. H. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl Acad. Sci. USA 99, 2473–2478 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  64. McShea, D. W. Mechanisms of large-scale evolutionary trends. Evolution 48, 1747–1763 (1994).

    Article  PubMed  Google Scholar 

  65. Alroy, J. Understanding the dynamics of trends within evolving lineages. Paleobiology 26, 319–329 (2000).

    Article  Google Scholar 

  66. Lillegraven, J. A., Kielan-Jaworowska, Z. & Clemens, W. A. Mesozoic Mammals: The First Two-thirds of Mammalian History (Univ. of California Press, 1979).

  67. Alroy, J. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48, 107–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Smith, F. A. et al. The evolution of maximum body size of terrestrial mammals. Science 330, 1216–1219 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Slater, G. J. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. Methods Ecol. Evol. 4, 734–744 (2013).

    Article  Google Scholar 

  70. Clauset, A. & Redner, S. Evolutionary model of species body mass diversification. Phys. Rev. Lett. 102, 038103 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Brocklehurst, N., Panciroli, E., Benevento, G. L. & Benson, R. B. Mammaliaform extinctions as a driver of the morphological radiation of Cenozoic mammals. Curr. Biol. 31, 2955–2963 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Lloyd, G. T. et al. Dinosaurs and the Cretaceous terrestrial revolution. Proc. R. Soc. Lond. B 275, 2483–2490 (2008).

    Google Scholar 

  73. Lyson, T. R. et al. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science 366, 977–983 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Weaver, L. N. & Wilson, G. P. Shape disparity in the blade-like premolars of multituberculate mammals: functional constraints and the evolution of herbivory. J. Mammal. 102, 967–985 (2021).

    Article  Google Scholar 

  75. Gill, P. G. et al. Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512, 303–305 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Conith, A. J., Imburgia, M. J., Crosby, A. J. & Dumont, E. R. The functional significance of morphological changes in the dentitions of early mammals. J. R. Soc. Interface 13, 20160713 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schultz, J. A. & Martin, T. Function of pretribosphenic and tribosphenic mammalian molars inferred from 3D animation. Naturwissenschaften 101, 771–781 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Jäger, K. R., Cifelli, R. L. & Martin, T. Molar occlusion and jaw roll in early crown mammals. Sci. Rep. 10, 22378 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Williams, S. H. et al. A preliminary analysis of correlated evolution in mammalian chewing motor patterns. Integr. Comp. Biol. 51, 247–259 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Grossnickle, D. M. The evolutionary origin of jaw yaw in mammals. Sci. Rep. 7, 45094 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bhullar, B. A. S. et al. Rolling of the jaw is essential for mammalian chewing and tribosphenic molar function. Nature 566, 528–532 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Grossnickle, D. M., Weaver, L. N., Jäger, K. R. & Schultz, J. A. The evolution of anteriorly directed molar occlusion in mammals. Zool. J. Linn. Soc. 194, 349–365 (2022).

    Article  Google Scholar 

  83. Higashiyama, H. et al. Mammalian face as an evolutionary novelty. Proc. Natl Acad. Sci. USA 118, e2111876118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sidor, C. A. & Hopson, J. A. Ghost lineages and “mammalness”: assessing the temporal pattern of character acquisition in the Synapsida. Paleobiology 24, 254–273 (1998).

    Article  Google Scholar 

  85. Kemp, T. S. The origin and early radiation of the therapsid mammal‐like reptiles: a palaeobiological hypothesis. J. Evol. Biol. 19, 1231–1247 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Hopson, J. A. & Kitching, J. W. A probainognathian cynodont from South Africa and the phylogeny of nonmammalian cynodonts. Bull. Mus. Comp. Zool. 156, 5–35 (2001).

    Google Scholar 

  87. Brocklehurst, N., Ruta, M., Müller, J. & Fröbisch, J. Elevated extinction rates as a trigger for diversification rate shifts: early amniotes as a case study. Sci. Rep. 5, 17104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jablonski, D. Approaches to macroevolution: 1. General concepts and origin of variation. Evol. Biol. 44, 427–450 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Luo, Z.-X. et al. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476, 442–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Chen, Z.-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012).

    Article  CAS  Google Scholar 

  91. Benton, M. J. & Newell, A. J. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Res. 25, 1308–1337 (2014).

    Article  Google Scholar 

  92. Benton, M. J. When Life Nearly Died: The Greatest Mass Extinction of All Time (Thames & Hudson, 2015).

  93. Botha, J. & Smith, R. M. H. Lystrosaurus species composition across the Permo-Triassic boundary of South Africa. Lethaia 40, 125–137 (2007).

    Article  Google Scholar 

  94. Botha-Brink, J. & Abdala, F. A new cynodont record from the Tropidostoma Assemblage Zone of the Beaufort Group: implications for the early evolution of cynodonts in South Africa. Palaeontol. Afr. 43, 1–6 (2008).

    Google Scholar 

  95. Abdala, F. & Ribeiro, A. M. Distribution and diversity patterns of Triassic cynodonts (Therapsida, Cynodontia) in Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 202–217 (2010).

    Article  Google Scholar 

  96. Irmis, R. B. & Whiteside, J. H. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle. Proc. R. Soc. Lond. B 279, 1310–1318 (2012).

    Google Scholar 

  97. Botha-Brink, J., Abdala, F. & Chinsamy-Turan, A. in Forerunners of Mammals: Radiation, Histology, Biology (ed Chinsamy-Turan, A.) 223–246 (Indiana Univ. Press, 2012).

  98. Lloyd, G. T. & Slater, G. J. A total-group phylogenetic metatree for Cetacea and the importance of fossil data in diversification analyses. Syst. Biol. 70, 922–939 (2021).

    Article  PubMed  Google Scholar 

  99. Lloyd, G. T. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).

    Article  Google Scholar 

  100. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  101. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Article  Google Scholar 

  102. Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mammal. 99, 1–14 (2018).

    Article  Google Scholar 

  103. Peters, S. E. & McClennen, M. The Paleobiology Database application programming interface. Paleobiology 42, 1–7 (2016).

    Article  Google Scholar 

  104. Kammerer, C. F., Angielczyk, K. D. & Frobisch, J. A comprehensive taxonomic revision of Dicynodon (Therapsida, Anomodontia) and its implications for dicynodont phylogeny, biogeography, and biostratigraphy. J. Vertebr. Paleontol. 11, 1–158 (2011).

    Article  Google Scholar 

  105. Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

    Article  Google Scholar 

  106. Jones, K. E., Angielczyk, K. D. & Pierce, S. E. Stepwise shifts underlie evolutionary trends in morphological complexity of the mammalian vertebral column. Nat. Commun. 10, 5071 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Pinheiro, J. et al. nlme: Linear and nonlinear mixed effects models, R package v.3.1–140 (2017); https://CRAN.R-project.org/package=nlme

  108. Hörandl, E. Beyond cladistics: extending evolutionary classifications into deeper time levels. Taxon 59, 345–350 (2010).

    Article  Google Scholar 

  109. Lungmus, J. K. & Angielczyk, K. D. Phylogeny, function and ecology in the deep evolutionary history of the mammalian forelimb. Proc. R. Soc. Lond. B 288, 20210494 (2021).

    Google Scholar 

  110. Brocklehurst, N. & Benson, R. B. J. Multiple paths to morphological diversification during the origin of amniotes. Nat. Ecol. Evol. 5, 1243–1249 (2021).

    Article  PubMed  Google Scholar 

  111. Carroll, R. L. The earliest reptiles. Zool. J. Linn. Soc. 45, 61–83 (1964).

    Article  Google Scholar 

  112. Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).

    Article  Google Scholar 

  113. Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. Evolution 51, 1341–1351 (1997).

    Article  PubMed  Google Scholar 

  114. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach (Springer, 2002).

  115. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

For discussions and feedback, we thank G. Slater, G. W. Mantilla, L. Weaver, S. Santana, K.-D. Benton, A. Bormet, C. Law and E. Panciroli. This work was funded by the National Science Foundation: DEB-1754502 (to K.D.A) and DBI-1812126 (to D.M.G.).

Author information

Authors and Affiliations

Authors

Contributions

S.M.H., D.M.G. and K.D.A. designed the study. S.M.H., G.T.L. and D.M.G. produced the metatree phylogeny. All authors (S.M.H., D.M.G., G.T.L., C.F.K. and K.D.A.) helped in collecting data and writing the paper. S.M.H. and D.M.G. performed analyses.

Corresponding author

Correspondence to Spencer M. Hellert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks John Alroy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Jaw length (log10 mm) and diet regressed against patristic distance for pelycosaur subclades.

The dashed lines are used for clades in which there is only a single diet. Grey bands are 95% confidence intervals.

Extended Data Fig. 2 Jaw length (log10 mm) and diet regressed against patristic distance for therapsid subclades.

We do not include a quasibinomial model for Therocephalia because the model algorithm did not converge on a reasonable result; we instead present a linear model (dashed line). We did not fit regression models for diets of Biarmosuchia or Gorgonopsia because their members all have the same diets – the dashed lines are included to help emphasize the lack of diet change. Grey bands are 95% confidence intervals.

Extended Data Fig. 3 Jaw length (log10 mm) and diet regressed against patristic distance for cynodont subclades.

We do not include a quasibinomial model for Probainognathia because the model algorithm did not converge on a reasonable result; we instead present a linear model (dashed line). Grey bands are 95% confidence intervals.

Extended Data Fig. 4 Jaw length (log10 mm) and diet regressed against patristic distance for mammaliaform subclades.

The dashed lines are used for clades in which there is only a single diet. Grey bands are 95% confidence intervals.

Extended Data Fig. 5 Jaw length (log10 mm) and diet regressed against patristic distance for therian subclades.

Grey bands are 95% confidence intervals.

Extended Data Fig. 6 Diet (A) and jaw lengths (B) for all synapsids in our sample are plotted against patristic distance.

These are the similar plots to those in Figs. 1B and C, but the subclades (rather than five major radiations) are highlighted in this figure. The smaller, straight lines represent linear regressions for synapsid subclades, and the grey curves are LOESS fitted regression curves (fitted to all data) and associated 95% confidence interval bands. For diet, we plot linear models rather than quasibinomial models (such as in Fig. 2) because quasibinomial models could not be fit to many of the subclades (for example, see Extended Data Fig. 15). Multituberculates are not included in this plot as a separate group, but they are the major clade within Allotheria (Extended Data Fig. 4).

Extended Data Fig. 7 Ancestral state reconstructions of discrete diets.

The pie charts illustrate the scaled likelihood probabilities of the three diet categories. See Supplementary Fig. 1 for a phylogeny with tip labels, and see the Fig. 1 caption for silhouette sources.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Fig. 1 and Tables 1–7.

Reporting Summary

Peer Review File

Supplementary Tables 6 and 7

Supplementary Table 6 Morphological character matrices used to create the phylogenetic metatree. Supplementary Table 7 Morphometric, diet and geologic age information on the sampled species (n = 404).

Supplementary Data 1

Nexus file of the dated majority-rule metatree for the sampled species (n = 404).

Supplementary Data 2

Nexus file of the full dated majority-rule metatree.

Supplementary Data 3

Nexus file of the full undated majority-rule metatree.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellert, S.M., Grossnickle, D.M., Lloyd, G.T. et al. Derived faunivores are the forerunners of major synapsid radiations. Nat Ecol Evol 7, 1903–1913 (2023). https://doi.org/10.1038/s41559-023-02200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02200-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing