Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Indirect genetic effects are shaped by demographic history and ecology in Arabidopsis thaliana

Abstract

The phenotype of an individual can be affected by the genes of its conspecifics through indirect genetic effects (IGEs). IGEs have been studied across different organisms including wild and domesticated animals and plants, but little is known about their genetic architecture. Here, in a large-scale intraspecific interaction experiment, we show that the contribution of IGEs to the biomass variation of Arabidopsis thaliana is comparable to values classically reported in animals. Moreover, we identify 11 loci explaining 85.1% of the variability in IGEs. We find that positive IGE alleles (that is, those with positive effects on neighbour biomass) occur both in relict accessions from southern Eurasia and in post-glacial colonizers from northern Scandinavia, and that they are likely to have two divergent origins: for nine loci, they evolved in the post-glacial colonizers independently from the relicts, while the two others were introgressed in the post-glacial colonizer from the relicts. Finally, we find that variation in IGEs probably reflects divergent adaptations to the contrasting environments of the edges and the centre of the native range of the species. These findings reveal a surprisingly tractable genetic basis of IGEs in A. thaliana that is shaped by the ecology and the demographic history of the species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the experimental design and quantification of IGEs.
Fig. 2: GWAS of IGEs on plant biomass.
Fig. 3: Geographic distribution of IGE variants.
Fig. 4: Admixture between non-relicts from north Sweden and relicts at IGE loci.
Fig. 5: Association between IGE loci and environmental variables.
Fig. 6: Association between IGE loci and plant growth.

Similar content being viewed by others

Data availability

The data analysed in this study are available in Zenodo: https://doi.org/10.5281/zenodo.7944154

Code availability

All the code used for statistical analysis is available in Zenodo: https://doi.org/10.5281/zenodo.7944154

References

  1. Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88, 15–30 (2013).

    Article  PubMed  Google Scholar 

  2. Gaüzère, P. et al. The diversity of biotic interactions complements functional and phylogenetic facets of biodiversity. Curr. Biol. 32, 2093–2100 (2022).

  3. Whitham, T. G. et al. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84, 559–573 (2003).

    Article  Google Scholar 

  4. Wolf, J. B., Brodie, E. D. III, Cheverud, J. M., Moore, A. J. & Wade, M. J. Evolutionary consequences of indirect genetic effects. Trends Ecol. Evol. 13, 64–69 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Griffing, B. Selection in reference to biological groups: I. Individual and group selection applied to populations of unordered groups. Aust. J. Biol. Sci. 20, 127–139 (1967).

    Article  CAS  PubMed  Google Scholar 

  6. Moore, A. J., Brodie, E. D. III & Wolf, J. B. Interacting phenotypes and the evolutionary process: I. Direct and indirect genetic effects of social interactions. Evolution 51, 1352–1362 (1997).

    Article  PubMed  Google Scholar 

  7. Griffing, B. Selection for populations of interacting genotypes. In Proceedings of the International Congress on Quantitative Genetics (eds Pollak, E. et al.) 413–434 (Iowa State Univ. Press, 1977).

  8. Bijma, P., Muir, W. M., Ellen, E. D., Wolf, J. B. & Van Arendonk, J. A. M. Multilevel selection 2: estimating the genetic parameters determining inheritance and response to selection. Genetics 175, 289–299 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jennings, P. R. & de Jesus, J. Studies on competition in rice I. Competition in mixtures of varieties. Evolution 22, 119–124 (1968).

    Article  PubMed  Google Scholar 

  10. Hamblin, J. Effect of environment, seed size and competitive ability on yield and survival of Phaseolus vulgaris (L.) genotypes in mixtures. Euphytica 24, 435–445 (1975).

    Article  Google Scholar 

  11. Kawano, K. & Thung, M. D. Intergenotypic competition and competition with associated crops in Cassava. Crop Science 22, 59–63 (1982).

  12. Murphy, G. P., Swanton, C. J., Acker, R. C. V. & Dudley, S. A. Kin recognition, multilevel selection and altruism in crop sustainability. J. Ecol. 105, 930–934 (2017).

    Article  Google Scholar 

  13. Montazeaud, G. et al. Farming plant cooperation in crops. Proc. R. Soc. B 287, 20191290 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Muir, W. M. Group selection for adaptation to multiple-hen cages: selection program and direct responses. Poult. Sci. 75, 447–458 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Wade, M. J., Bijma, P., Ellen, E. D. & Muir, W. Group selection and social evolution in domesticated animals. Evol. Appl. 3, 453–465 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Muir, W. M. Incorporation of competitive effects in forest tree or animal breeding programs. Genetics 170, 1247–1259 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bergsma, R., Kanis, E., Knol, E. F. & Bijma, P. The contribution of social effects to heritable variation in finishing traits of domestic pigs (Sus scrofa). Genetics 178, 1559–1570 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alemu, S. W., Bijma, P., Møller, S. H., Janss, L. & Berg, P. Indirect genetic effects contribute substantially to heritable variation in aggression-related traits in group-housed mink (Neovison vison). Genet. Sel. Evol. 46, 30 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ellen, E. D., Visscher, J., van Arendonk, J. A. M. & Bijma, P. Survival of laying hens: genetic parameters for direct and associative effects in three purebred layer lines. Poult. Sci. 87, 233–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Baud, A. et al. Dissecting indirect genetic effects from peers in laboratory mice. Genome Biol. 22, 216 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Santostefano, F., Wilson, A. J., Niemelä, P. T. & Dingemanse, N. J. Indirect genetic effects: a key component of the genetic architecture of behaviour. Sci. Rep. 7, 10235 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xia, C., Canela-Xandri, O., Rawlik, K. & Tenesa, A. Evidence of horizontal indirect genetic effects in humans. Nat. Hum. Behav. 5, 399–406 (2021).

    Article  PubMed  Google Scholar 

  23. Tilman, D. Resource Competition and Community Structure MPB-17, Vol. 17 (Princeton Univ. Press, 2020).

  24. Callaway, R. M. Positive interactions among plants. Bot. Rev. 61, 306–349 (1995).

    Article  Google Scholar 

  25. Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Hierro, J. L. & Callaway, R. M. The ecological importance of allelopathy. Annu. Rev. Ecol. Evol. Syst. 52, 25–45 (2021).

    Article  Google Scholar 

  27. Anten, N. P. R. & Chen, B. J. W. Detect thy family: mechanisms, ecology and agricultural aspects of kin recognition in plants. Plant. Cell Environ. 44, 1059–1071 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crepy, M. A. & Casal, J. J. Photoreceptor-mediated kin recognition in plants. New Phytol. 205, 329–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Bhatt, M. V., Khandelwal, A. & Dudley, S. A. Kin recognition, not competitive interactions, predicts root allocation in young Cakile edentula seedling pairs. New Phytol. 189, 1135–1142 (2011).

    Article  PubMed  Google Scholar 

  30. Dudley, S. A., Murphy, G. P. & File, A. L. Kin recognition and competition in plants. Funct. Ecol. 27, 898–906 (2013).

    Article  Google Scholar 

  31. Dudley, S. A. Plant cooperation. AoB Plants 7, plv113 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cappa, E. P. & Cantet, R. J. C. Direct and competition additive effects in tree breeding: Bayesian estimation from an individual tree mixed model. Silvae Genet. 57, 45–56 (2008).

    Article  Google Scholar 

  33. Costa e Silva, J. & Kerr, R. J. Accounting for competition in genetic analysis, with particular emphasis on forest genetic trials. Tree Genet. Genomes 9, 1–17 (2013).

    Article  Google Scholar 

  34. Mutic, J. J. & Wolf, J. B. Indirect genetic effects from ecological interactions in Arabidopsis thaliana. Mol. Ecol. 16, 2371–2381 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Andersson, S. Indirect genetic effects from competition in the clonal herb Sedum album (Crassulaceae). PLoS ONE 9, e106104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Subrahmaniam, H. J. et al. The genetics underlying natural variation of plant-plant interactions, a beloved but forgotten member of the family of biotic interactions. Plant J. 93, 747–770 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Becker, C. et al. The ecologically relevant genetics of plant–plant interactions. Trends Plant Sci. 28, 31–42 (2022).

  38. Takou, M. et al. Linking genes with ecological strategies in Arabidopsis thaliana. J. Exp. Bot. 70, 1141–1151 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Horton, M. W. et al. Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat. Genet. 44, 212–216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 1001 Genomes Consortium. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481–491 (2016).

    Article  Google Scholar 

  41. Lee, C.-R. et al. On the post-glacial spread of human commensal Arabidopsis thaliana. Nat. Commun. 8, 14458 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Exposito-Alonso, M. et al. Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. Nat. Ecol. Evol. 2, 352–358 (2018).

    Article  PubMed  Google Scholar 

  43. Toledo, B., Marcer, A., Méndez-Vigo, B., Alonso-Blanco, C. & Picó, F. X. An ecological history of the relict genetic lineage of Arabidopsis thaliana. Environ. Exp. Bot. 170, 103800 (2020).

    Article  CAS  Google Scholar 

  44. Exposito-Alonso, M., Burbano, H. A., Bossdorf, O., Nielsen, R. & Weigel, D. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature 573, 126–129 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Hancock, A. M. et al. Adaptation to climate across the Arabidopsis thaliana genome. Science 334, 83–86 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Vasseur, F. et al. Climate as a driver of adaptive variations in ecological strategies in Arabidopsis thaliana. Ann. Bot. 122, 935–945 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. Sartori, K. et al. Leaf economics and slow-fast adaptation across the geographic range of Arabidopsis thaliana. Sci. Rep. 9, 10758 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Estarague, A. et al. Into the range: a latitudinal gradient or a center-margins differentiation of ecological strategies in Arabidopsis thaliana? Ann. Bot. 129, 343–356 (2022).

    Article  PubMed  Google Scholar 

  49. Wuest, S. E. et al. Increasing plant group productivity through latent genetic variation for cooperation. PLoS Biol. 20, e3001842 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin, S. H., Davey, J. W. & Jiggins, C. D. Evaluating the use of ABBA–BABA statistics to locate introgressed loci. Mol. Biol. Evol. 32, 244–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Ferrero-Serrano, Á. & Assmann, S. M. Phenotypic and genome-wide association with the local environment of Arabidopsis. Nat. Ecol. Evol. 3, 274–285 (2019).

    Article  PubMed  Google Scholar 

  53. Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).

    Article  Google Scholar 

  54. Grime, J. P. & Mackey, J. The role of plasticity in resource capture by plants. Evol. Ecol. 16, 299–307 (2002).

    Article  Google Scholar 

  55. Campbell, B. D., Grime, J. P. & Mackey, J. M. L. A trade-off between scale and precision in resource foraging. Oecologia 87, 532–538 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Rivas-San Vicente, M. & Plasencia, J. Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62, 3321–3338 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Koo, Y. M., Heo, A. Y. & Choi, H. W. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 36, 1–10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nozue, K. et al. Network analysis reveals a role for salicylic acid pathway components in shade avoidance. Plant Physiol. 178, 1720–1732 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, C. & Li, L. Hormonal regulation in shade avoidance. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01527 (2017).

  60. Casal, J. J. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 64, 403–427 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Brotherstone, S. et al. Competition effects in a young Sitka spruce (Picea sitchensis, Bong. Carr) clonal trial. Silvae Genet. 60, 149–155 (2011).

    Article  Google Scholar 

  62. Baron, E., Richirt, J., Villoutreix, R., Amsellem, L. & Roux, F. The genetics of intra- and interspecific competitive response and effect in a local population of an annual plant species. Funct. Ecol. 29, 1361–1370 (2015).

    Article  Google Scholar 

  63. Hartfield, M. & Glémin, S. Hitchhiking of deleterious alleles and the cost of adaptation in partially selfing species. Genetics 196, 281–293 (2014).

    Article  PubMed  Google Scholar 

  64. Filiault, D. L. et al. Amino acid polymorphisms in Arabidopsis phytochrome B cause differential responses to light. Proc. Natl Acad. Sci. USA 105, 3157–3162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Balasubramanian, S. et al. The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nat. Genet. 38, 711–715 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maloof, J. N. et al. Natural variation in light sensitivity of Arabidopsis. Nat. Genet. 29, 441–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Stenøien, H. K., Fenster, C. B., Kuittinen, H. & Savolainen, O. Quantifying latitudinal clines to light responses in natural populations of Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 89, 1604–1608 (2002).

    Article  PubMed  Google Scholar 

  68. Hamilton, W. D. The genetical evolution of social behaviour. I & II. J. Theor. Biol. 7, 1–52 (1964).

    Article  CAS  PubMed  Google Scholar 

  69. Bijma, P. The quantitative genetics of indirect genetic effects: a selective review of modelling issues. Heredity 112, 61–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Bijma, P. A general definition of the heritable variation that determines the potential of a population to respond to selection. Genetics 189, 1347–1359 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shen, X. et al. Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLoS Genet. 10, e1004842 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Brachi, B. et al. Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 112, 4032–4037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brachi, B. et al. Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana. Mol. Ecol. 22, 4222–4240 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Gloss, A. D. et al. Genome-wide association mapping within a local Arabidopsis thaliana population more fully reveals the genetic architecture for defensive metabolite diversity. Phil. Trans. R. Soc. B 377, 20200512 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  77. Butler, D., Cullis, B., Gilmour, A., Gogel, B. & Thompson, R. ASReml-R Reference Manual Version 4 (VSN International, 2017).

  78. Vilhjálmsson, B. J. & Nordborg, M. The nature of confounding in genome-wide association studies. Nat. Rev. Genet. 14, 1–2 (2013).

    Article  PubMed  Google Scholar 

  79. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  80. Clayton, D. snpStats: SnpMatrix and XSnpMatrix classes and methods. R package version 1.50.0. Bioconductor https://doi.org/10.18129/B9.bioc.snpStats (2023).

  81. Whiting, J. R. JimWhiting91/genotype_plot: Genotype Plot. Zenodo https://doi.org/10.5281/zenodo.5913504 (2022).

  82. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hill, W. G. & Weir, B. S. Variances and covariances of squared linkage disequilibria in finite populations. Theor. Popul. Biol. 33, 54–78 (1988).

    Article  CAS  PubMed  Google Scholar 

  85. Global Land Cover 2000. European Commission https://forobs.jrc.ec.europa.eu/glc2000 (2003).

  86. Obenchain, V. et al. VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioinformatics 30, 2076–2078 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  PubMed  Google Scholar 

  88. De Mita, S. & Siol, M. EggLib: processing, analysis and simulation tools for population genetics and genomics. BMC Genet. 13, 27 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Fankhauser, T. Kay and Q. Pan for their helpful comments on the manuscript and A. Estarague, F. Vasseur and C. Violle for insightful discussions. This work was supported by the University of Lausanne, the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement SOCLE (no. 101030712) to G.M. S.E.W. acknowledges funding from the Swiss National Science Foundation, project no. 310030_192537.

Author information

Authors and Affiliations

Authors

Contributions

G.M. and S.E.W conceptualized the study based on data previously collected by S.E.W. G.M. conducted the quantification of IGEs, the GWAS and the GEAs. G.M. and Q.H. performed introgression tests and investigated candidate genes. G.M. wrote the manuscript with L.K. All the authors commented on the manuscript. L.K. advised and oversaw the project.

Corresponding authors

Correspondence to Germain Montazeaud or Laurent Keller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Amelie Baud, Julin Maloof and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2 and Figs. 1–14.

Reporting Summary

Peer Review File

Supplementary Data 1

List of genes with at least one non-synonymous or frameshift mutation that is in proximity and in high linkage with an SNP significantly associated with IGE.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazeaud, G., Helleu, Q., Wuest, S.E. et al. Indirect genetic effects are shaped by demographic history and ecology in Arabidopsis thaliana. Nat Ecol Evol 7, 1878–1891 (2023). https://doi.org/10.1038/s41559-023-02189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02189-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing