Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ancient DNA reveals genetic admixture in China during tiger evolution

Abstract

The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100–10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1–12×) and three Caspian tigers (4–8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000–10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ancient tiger specimens collected in this study and the inferred dispersal routes of the species based on joint interpretation from modern and ancient tiger genomes.
Fig. 2: Phylogenetic relationships among ancient and modern tigers.
Fig. 3: Population genomic structure of 13 ancient and 33 modern tigers based on 1,242,142 transversions from autosomal neutral regions.
Fig. 4: The D-statistic inferences for possible scenarios of gene flow and f-statistic-based admixture graph modelling based on ancient and modern specimens.
Fig. 5: Population history modelling of tigers based on modern and ancient specimens.
Fig. 6: The projected tiger habitat suitability at present and during the LGM based on ENM in Maxent overlaid with the preferred vegetation layer.

Similar content being viewed by others

Data availability

The next-generation-sequencing raw data of the tiger samples have been deposited in the Sequence Read Archive (BioProject ID: PRJNA822019). The data processing pipeline is available at https://github.com/xinsun1/Ancient_tiger_pop_gen. The processed data file is available at https://doi.org/10.5061/dryad.73n5tb324.

References

  1. Johnson, W. E. et al. The late Miocene radiation of modern felidae: a genetic assessment. Science 311, 73–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Li, G., Davis, B. W., Eizirik, E. & Murphy, W. J. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res. 26, 1–11 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hemmer, H. Fossil history of living felidae. Carnivore 2, 58–61 (1979).

    Google Scholar 

  4. Kitchener, A. C. & Yamaguchi, N. In Tigers of the World (eds Tilson, R. & Nyhus, P. J.) 53–84 (Elsevier, 2010).

  5. Hemmer, H. in Tigers of the World. The Biology, Biopolitics, Management, and Conservation of an Endangered Species (eds Tilson, R. L. & Seal, U. S.) 28–35 (Noyes Publications, 1987).

  6. Mazák, J. H., Christiansen, P. & Kitchener, A. C. Oldest known pantherine skull and evolution of the tiger. PLoS ONE 6, e25483 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Werdelin, L., Yamaguchi, N., Johnson, E. & O’Brien, S. J. In Biology and Conservation of Wild Felids (eds Macdonald D. & Loveridge A.) 59–82 (Oxford Univ. Press, 2010).

  8. Mazak, V. Panthera tigris. Mamm. Species https://doi.org/10.2307/3504004 (1981).

  9. Luo, S.-J., Liu, Y.-C. & Xu, X. Tigers of the world: genomics and conservation. Annu. Rev. Anim. Biosci. 7, 521–548 (2019).

    Article  PubMed  Google Scholar 

  10. Cooper, D. M. et al. Predicted Pleistocene–Holocene range shifts of the tiger (Panthera tigris). Divers. Distrib. 22, 1199–1211 (2016).

    Article  Google Scholar 

  11. Driscoll, C. A. et al. Mitochondrial phylogeography illuminates the origin of the extinct Caspian tiger and its relationship to the Amur tiger. PLoS ONE 4, e4125 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xue, H.-R. et al. Genetic ancestry of the extinct Javan and Bali tigers. J. Hered. 106, 247–257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cho, Y. S. et al. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat. Commun. 4, 2433 (2013).

    Article  PubMed  Google Scholar 

  14. Wilting, A. et al. Planning tiger recovery: understanding intraspecific variation for effective conservation. Sci. Adv. 1, e1400175 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Armstrong, E. E. et al. Recent evolutionary history of tigers highlights contrasting roles of genetic drift and selection. Mol. Biol. Evol. 38, 2366–2379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo, S.-J. et al. Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS Biol. 2, e442 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goodrich, J. et al. Panthera tigris. The IUCN Red List of Threatened Species 2022 (IUCN, 2022).

  18. Tilson, R., Defu, H., Muntifering, J. & Nyhus, P. J. Dramatic decline of wild South China tigers Panthera tigris amoyensis: field survey of priority tiger reserves. Oryx 38, 40–47 (2004).

    Article  Google Scholar 

  19. Tilson, R., Traylor-Holzer, K. & Jiang, Q. M. The decline and impending extinction of the South China tiger. Oryx 31, 243–252 (1997).

    Article  Google Scholar 

  20. Liu, Y.-C. et al. Genome-wide evolutionary analysis of natural history and adaptation in the world’s tigers. Curr. Biol. 28, 3840–3849.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Mazák, J. H. Craniometric variation in the tiger (Panthera tigris): implications for patterns of diversity, taxonomy and conservation. Mamm. Biol. 75, 45–68 (2010).

    Article  Google Scholar 

  22. van der Valk, T. et al. Million-year-old DNA sheds light on the genomic history of mammoths. Nature 591, 265–269 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Skoglund, P. & Mathieson, I. Ancient genomics of modern humans: the first decade. Annu. Rev. Genomics Hum. Genet. 19, 381–404 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Orlando, L. & Cooper, A. Using ancient DNA to understand evolutionary and ecological processes. Annu. Rev. Ecol. Evol. Syst. 45, 573–598 (2014).

    Article  Google Scholar 

  25. Barnett, R. et al. Genomic adaptations and evolutionary history of the extinct scimitar-toothed cat, Homotherium latidens. Curr. Biol. 30, 5018–5025.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paijmans, J. L. A. et al. Evolutionary history of saber-toothed cats based on ancient mitogenomics. Curr. Biol. 27, 3330–3336.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Westbury, M. V. et al. A genomic exploration of the early evolution of extant cats and their sabre-toothed relatives. Open Res. Eur. 1, 25 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. de Manuel, M. et al. The evolutionary history of extinct and living lions. Proc. Natl Acad. Sci. USA 117, 10927–10934 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barnett, R. et al. Phylogeography of lions (Panthera leo ssp.) reveals three distinct taxa and a late Pleistocene reduction in genetic diversity. Mol. Ecol. 18, 1668–1677 (2009).

    Article  PubMed  Google Scholar 

  30. Barnett, R. et al. Mitogenomics of the extinct cave lion, Panthera spelaea (Goldfuss, 1810), resolve its position within the Panthera cats. Open Quat. 2, 4 (2016).

    Article  Google Scholar 

  31. Salis, A. T. et al. Lions and brown bears colonized North America in multiple synchronous waves of dispersal across the Bering Land Bridge. Mol. Ecol. 31, 6407–6421 (2022).

    Article  PubMed  Google Scholar 

  32. Paijmans, J. L. A. et al. Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations. BMC Evol. Biol. 18, 156 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, J. et al. An extinct and deeply divergent tiger lineage from northeastern China recognized through palaeogenomics. Proc. R. Soc. B 289, 20220617 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hilzheimer, H. Uber einige Tigerschadel aus der Strassburger Zoologischen Sammlung. Zool. Anz. 28, 594–599 (1905).

    Google Scholar 

  35. Zhang, W. et al. Sorting out the genetic background of the last surviving South China tigers. J. Hered. 110, 641–650 (2019).

    Article  PubMed  Google Scholar 

  36. Baryshnikov, G. F. Late Pleistocene Felidae remains (Mammalia, Carnivora) from Geographical Society Cave in the Russian Far East. Proc. Zool. Inst. RAS 320, 84–120 (2016).

    Article  Google Scholar 

  37. Tiunov, M. P. & Gimranov, D. O. The first fossil Petaurista (Mammalia: Sciuridae) from the Russian Far East and its paleogeographic significance. Palaeoworld 29, 176–181 (2020).

    Article  Google Scholar 

  38. Tiunov, M. P. & Gusev, A. E. A new extinct ochotonid genus from the late Pleistocene of the Russian Far East. Palaeoworld 30, 562–572 (2021).

    Article  Google Scholar 

  39. Tiunov, M. P., Golenishchev, F. N. & Voyta, L. L. The first finding of Mimomys in the Russian Far East. Acta Palaeontol. Pol. 61, 205–210 (2016).

    Google Scholar 

  40. Voyta, L. L., Omelko, V. E., Tiunov, M. P. & Vinokurova, M. A. When beremendiin shrews disappeared in East Asia, or how we can estimate fossil redeposition. Hist. Biol. 33, 2656–2667 (2021).

    Article  Google Scholar 

  41. Nowell, K. & Peter Jackson. Wild Cats: Status Survey and Conservation Action Plan (IUCN, 1996).

  42. Gour, D. S. et al. Philopatry and dispersal patterns in tiger (Panthera tigris). PLoS ONE 8, e66956 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo, S.-J. et al. Proceedings in phylogeography and genetic ancestry of tigers (Panthera tigris) in China and across their range. Zool. Res. 27, 441–448 (2006).

    Google Scholar 

  44. Hasegawa, Y., Takakuwa, Y., Nenoki, K. & Kimura, T. Fossil tiger from limestone mine of Tsukumi City, Oita Prefecture, Kyushu Island, Japan. Bull. Gunma Mus. Nat. Hist. 23, 1–11 (2019).

    Google Scholar 

  45. Kawamura, Y., Kamei, T. & Taruno, H. Middle and Late Pleistocene mammalian faunas in Japan. Quat. Res. 28, 317–326 (1989).

    Article  Google Scholar 

  46. Hasegawa, Y. Summary of quaternary carnivore in Japan. Mamm. Sci. 38, 23–28 (1979).

    Google Scholar 

  47. Tang, C. Q. et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 9, 4488 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Song, W. et al. Multiple refugia from penultimate glaciations in East Asia demonstrated by phylogeography and ecological modelling of an insect pest. BMC Evol. Biol. 18, 152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Article  CAS  Google Scholar 

  50. Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).

    Article  CAS  Google Scholar 

  51. Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article  CAS  Google Scholar 

  52. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463, 757–762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carøe, C. et al. Single‐tube library preparation for degraded DNA. Methods Ecol. Evol. 9, 410–419 (2018).

    Article  Google Scholar 

  55. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).

    Article  Google Scholar 

  56. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Auwera, G. A. et al. From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).

    PubMed  Google Scholar 

  63. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Antunes, A., Pontius, J., Ramos, M. J., O’Brien, S. J. & Johnson, W. E. Mitochondrial introgressions into the nuclear genome of the domestic cat. J. Hered. 98, 414–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Lopez, J. V., Yuhki, N., Masuda, R., Modi, W. & O’Brien, S. J. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J. Mol. Evol. 39, 174–190 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, J.-H. et al. Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species. Gene 366, 292–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wilgenbusch, J. C. & Swofford, D. Inferring evolutionary trees with PAUP. Curr. Protoc. Bioinformatics 00, 6.4.1–6.4.28 (2003).

    Article  Google Scholar 

  71. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ní Leathlobhair, M. et al. The evolutionary history of dogs in the Americas. Science 361, 81–85 (2018).

    Article  PubMed  Google Scholar 

  81. Liu, L. et al. Genomic analysis on pygmy hog reveals extensive interbreeding during wild boar expansion. Nat. Commun. 10, 1992 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1034 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).

    Article  Google Scholar 

  86. Luo, S.-J. The status of the tiger in China. Cat. N. Spec. Issue 5, 10–13 (2010).

    Google Scholar 

  87. Smith, A. T. et al. A Guide to the Mammals of China (Princeton Univ. Press, 2008).

  88. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  89. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  90. Ray, N. & Adams, J. M. A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP). Internet Archaeol. https://doi.org/10.11141/ia.11.2 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

All samples were recruited in compliance with the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) through permissions issued to the School of Life Sciences (PI: S.-J.L.), Peking University, by the State Forestry Administration of China. We thank all the collaborators, institutes and zoos that provided the specimens listed in Supplementary Table 2 upon which this study is based. Special thanks are given to the following people who provided important help during various stages of the project: X. Zhou, L. Liao, J. Wu, C. Feng, S. Xiang, Y. Shen, C. Xie, L. Zhang, Y. Chen, F. Tang, E. Cappellini, M. Mackie, L. Miao, X. Hu, J. Huang, H. Yu, H. Meng, Q. Fu, E. Hoeger, M. Surovy, N. Duncan, S. Ketelsen, M.-D. Wandhammer, V. Rakotondrahaja, A. Abramov, I. Y. Pavlinov, E. I. Zholnerovskaya, N. V. Lopatina, X. Gu, H. Gu, D. Miquelle and D. Smith. We also pay tribute to the late U. Seal and P. Jackson for their dedication to tiger conservation and pioneer effort in assembling voucher specimens for genetic study. This work was supported by the National Key Research and Development Program of China (SQ2022YFF0802300), the National Natural Science Foundation of China (NSFC32070598) and the Peking-Tsinghua Center for Life Sciences. M.P.T. conducted the research within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme No. 121031000153-7).

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived and designed by S.-J.L. Laboratory work was done by X.S., Y.-C.L., Y.Z., Y.H., Y.-H.P, C.L., Y.P., M.S.V. and Y.-Y.H. Data analysis was performed by X.S., S.G. and X.-H.W. Samples were provided by M.P.T., D.O.G., C.A.D., R.-Z.Y, B.-G.L., K.J., X.X., O.U. and N.Y. The initial manuscript draft was written by X.S. and S.-J.L., with helpful input from M.T.P.G., S.J.O. and N.Y. All authors contributed to interpreting the data and editing the manuscript.

Corresponding authors

Correspondence to Stephen J. O’Brien, Nobuyuki Yamaguchi or Shu-Jin Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Authentication of ancient DNA sequencing data from RUSA0021.

Panels A and B show the different DNA substitution patterns at the 5′ (left) and 3′ (right) ends of reads from RUSA0021 before and after USER mix treatment, respectively. Red lines refer to C-to-T substitutions and blue lines refer to G-to-A substitutions.

Extended Data Fig. 2 Variable sites profiling with raw and filtered dataset.

(a) Error rate estimation by comparing an ancient genome sequencing data to a high-quality genome data using ANGSD. (b) Mutation rate distribution of the filtered SNP dataset.

Extended Data Fig. 3 Heterozygosity estimation of tigers using ANGSD.

Only transitions were included for the analysis. Samples with sequencing depth lower than 4× were excluded. In the box plot, center line is the median, box bounds represent the interquartile range (IQR), whiskers extend to 1.5 × IQR from both end, and outliers are data beyond the range of whiskers.

Extended Data Fig. 4 PCA and admixture results based on genotype likelihood dataset.

(a) The first three principal components using PCAngsd. (b) The supervised population structure admixture analyses using NGSadmix assuming 2 to 8 ancestral populations.

Extended Data Fig. 5 D-statistic inferences for possible scenarios of gene flow between tigers.

The D-statistic values are shown in x-axis and sample IDs of tigers representing different PopX in each testing are shown in y-axis with symbol color-coded by subspecies. Symbol shapes indicate different representatives of Pop3 in the tree topology above the D-statistic plot. A D-statistic test is considered significant with the absolute value of transformed z-score |z| > 3. Error bars show 1 × s.e.m. from a block jackknife resampling method with a block size of 5 cM. The corresponding scenarios of excessive allele sharing inferred from D-statistics are indicated in the tree above each plot. (a) Support for excessive allele sharing between different South China tiger individuals and other tiger populations (D > 0). (b and c) Support for excessive allele sharing between Bengal tigers and the outgroup species (D < 0 in B and D > 0 in C). (d) Support for excessive allele sharing between Bengal tigers and Caspian tigers relative to that between Bengal tigers and other tiger populations (d < 0). (e) Support for excessive allele sharing between the ancient RFE tiger (RUSA) and outgroup relative to that between RUSA and other modern tigers (D < 0). Abbreviations for the specimens are as follows based on the geographic origin of the individual: AMO, the South China tiger (P. t. amoyensis); ALT, the Amur tiger (P. t. altaica); COR, the Indochinese tiger (P. t. corbetti); JAX, the Malayan tiger (P. t. jacksoni); SUM, the Sumatran tiger (P. t. sumatrae); TIG, the Bengal tiger (P. t. tigris); VIR, the Caspian tiger (P. t. virgata); RUSA, the ancient Russian Far East tiger population dated to approximately 10,000 years ago; PLE, the lion P. leo; PUN, the snow leopard P. uncia.

Extended Data Fig. 6 Ecological niche modeling results of the tiger distribution during four different periods.

(a) The Last Interglacial period (LIG, approximately 120,000–140,000 years ago), (b) the Last Glacial Maximum (LGM, approximately 22,000 years ago), (c) the mid-Holocene (approximately 6,000 years ago), and (d) present day (data from approximately 1960–1990).

Extended Data Fig. 7 Three postulated scenarios concerning the ancient colonization of Central Asia and the establishment of the Caspian tiger.

The three dispersal routes included a southern route via the Indian subcontinent, a northern route via the Siberian plain, and a historical ‘Silk Road’ route through the Gansu corridor in Northwest China. Phylogenomic and demographic analyses and biogeographic modeling supported a possible initial expansion from East Asia to the modern range in Central Asia via the northern Siberian route, followed by subsequent gene flow from the ancient Bengal tiger counterpart through the Himalayan corridor.

Extended Data Fig. 8 TreeMix phylogeny of ancient and modern tigers.

Samples were grouped by modern subspecies or ancient RFE population. South China tigers with admixed ancestry were assigned as a separate group (AMO_MIX). Migration edges (m) were inferred from 0 to 7. The migration band inference results were similar to the results for gene flow and population admixture obtained with D-statistics and admixture graph modeling. We used the topology with 7 inferred migration bands for further demographic history modeling.

Extended Data Fig. 9 Demographic history analysis for different tiger subspecies estimated in PSMC.

PSMC was applied for each tiger, and one for each subspecies is shown here. The generation time g was set to 5 years, and the mutation rate μ was calculated to be 0.64 × 10−9 substitutions per site per year. Support values from 100 bootstrap replicates for each run are shown in gray.

Extended Data Table 1 Ancient and modern tiger samples of the study including all nine modern subspecies and ancient Russian Far East population

Supplementary information

Supplementary Information

Supplementary Figs.1–6 and Tables 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Liu, YC., Tiunov, M.P. et al. Ancient DNA reveals genetic admixture in China during tiger evolution. Nat Ecol Evol 7, 1914–1929 (2023). https://doi.org/10.1038/s41559-023-02185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02185-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing