Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An invasive pathogen drives directional niche contractions in amphibians

Abstract

Global change is causing an unprecedented restructuring of ecosystems, with the spread of invasive species being a key driver. While population declines of native species due to invasives are well documented, much less is known about whether new biotic interactions reshape niches of native species. Here we quantify geographic range and realized-niche contractions in Australian frog species following the introduction of amphibian chytrid fungus Batrachochytrium dendrobatidis, a pathogen responsible for catastrophic amphibian declines worldwide. We show that chytrid-impacted species experienced proportionately greater contractions in niche breadth than geographic distribution following chytrid emergence. Furthermore, niche contractions were directional, with contemporary distributions of chytrid-impacted species characterized by higher temperatures, lower diurnal temperature range, higher precipitation and lower elevations. Areas with these conditions may enable host persistence with chytrid through lower pathogenicity of the fungus and/or greater demographic resilience. Nevertheless, contraction to a narrower subset of environmental conditions could increase host vulnerability to other threatening processes and should be considered in assessments of extinction risk and during conservation planning. More broadly, our results emphasize that biotic interactions can strongly shape species realized niches and that large-scale niche contractions due to new species interactions—particularly emerging pathogens—could be widespread.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map showing the study region and distribution centroids for 61 (55 extant and 6 presumed extinct) frog species included in the study.
Fig. 2: Comparison of changes in niche hypervolumes and EOO for two exemplar species.
Fig. 3: Change in niche breadth (hypervolume) and EOO between the full and post-chytrid datasets.
Fig. 4: Parameter estimates (effect sizes) from the fitted BACI models for EOO and niche breadth (hypervolume).
Fig. 5: Niche dissimilarity metrics for hypervolumes constructed using the full and post-chytrid datasets.
Fig. 6: Parameter estimates (effect sizes) from the fitted BACI models comparing standardized shifts in the niche centroid values of species.

Similar content being viewed by others

Data availability

Raw niche variable values associated with the occurrence records of each species can be accessed at the Zenodo repository: https://doi.org/10.5281/zenodo.8088601. Metadata for each species and results for all niche analyses are in the Supplementary Data. Note, occurrence records for sensitive species are buffered to 10 km in most public databases (non-buffered records were obtained for these species under license for this work).

Code availability

R code to replicate the hypervolume, geographic distribution (EOO), niche metrics calculations and statistical analyses can be accessed at the Zenodo repository: https://doi.org/10.5281/zenodo.8088601

References

  1. Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88, 15–30 (2013).

    PubMed  Google Scholar 

  2. Carscadden, K. A. et al. Niche breadth: causes and consequences for ecology, evolution, and conservation. Q. Rev. Biol. 95, 179–214 (2020).

    Google Scholar 

  3. Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).

    Google Scholar 

  4. Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Google Scholar 

  5. Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Google Scholar 

  6. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    PubMed  Google Scholar 

  7. Louthan, A. M., Doak, D. F. & Angert, A. L. Where and when do species interactions set range limits? Trends Ecol. Evol. 30, 780–792 (2015).

    PubMed  Google Scholar 

  8. Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).

    Google Scholar 

  9. Anderson, R. P. When and how should biotic interactions be considered in models of species niches and distributions? J. Biogeogr. 44, 8–17 (2017).

    Google Scholar 

  10. Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).

    PubMed  Google Scholar 

  11. Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. USA 113, 11261–11265 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).

    PubMed  Google Scholar 

  13. Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche contractions in declining species: mechanisms and consequences. Trends Ecol. Evol. 32, 346–355 (2017).

    PubMed  Google Scholar 

  14. Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    PubMed  Google Scholar 

  16. Fisher, M. C. & Garner, T. W. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).

    CAS  PubMed  Google Scholar 

  17. Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).

    CAS  PubMed  Google Scholar 

  18. Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth 4, 125–134 (2007).

    Google Scholar 

  19. Scheele, B. C. et al. After the epidemic: ongoing declines, stabilizations and recoveries in amphibians afflicted by chytridiomycosis. Biol. Conserv. 206, 37–46 (2017).

    Google Scholar 

  20. Brannelly, L. A. et al. Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecol. Lett. 24, 130–148 (2021).

    PubMed  Google Scholar 

  21. Fisher, M. C., Pasmans, F. & Martel, A. Virulence and pathogenicity of chytrid fungi causing amphibian extinctions. Annu. Rev. Microbiol. 75, 673–693 (2021).

    PubMed  Google Scholar 

  22. Skerratt, L. F. et al. Priorities for management of chytridiomycosis in Australia: saving frogs from extinction. Wildl. Res. 43, 105–120 (2016).

    Google Scholar 

  23. Gillespie, G. R. et al. Status and priority conservation actions for Australian frog species. Biol. Conserv. 247, 108543 (2020).

    Google Scholar 

  24. Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: the once and future niche. Proc. Natl Acad. Sci. USA 106, 19651–19658 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton Univ. Press, 2011).

  26. Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. USA 106, 19644–19650 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. Murray, K. A. et al. Assessing spatial patterns of disease risk to biodiversity: implications for the management of the amphibian pathogen, Batrachochytrium dendrobatidis. J. Appl. Ecol. 48, 163–173 (2011).

    Google Scholar 

  28. Granados-Martínez, S., Zumbado-Ulate, H., Searle, C. L., Oliveira, B. F. & García-Rodríguez, A. Niche contraction of an endangered frog driven by the amphibian chytrid fungus. EcoHealth 18, 134–144 (2021).

    PubMed  Google Scholar 

  29. Puschendorf, R. et al. Distribution models for the amphibian chytrid Batrachochytrium dendrobatidis in Costa Rica: proposing climatic refuges as a conservation tool. Divers. Distrib. 15, 401–408 (2009).

    Google Scholar 

  30. Scheele, B. C. et al. Living with the enemy: facilitating amphibian coexistence with disease. Biol. Conserv. 236, 52–59 (2019).

    Google Scholar 

  31. Heard, G. W. et al. Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecol. Lett. 18, 853–863 (2015).

    PubMed  Google Scholar 

  32. Puschendorf, R. et al. Environmental refuge from disease-driven amphibian extinction. Conserv. Biol. 25, 956–964 (2011).

    PubMed  Google Scholar 

  33. Olson, D. H., Ronnenberg, K. L., Glidden, C. K., Christiansen, K. R. & Blaustein, A. R. Global patterns of the fungal pathogen Batrachochytrium dendrobatidis support conservation urgency. Front. Vet. Sci. 8, 685877 (2021).

    PubMed  PubMed Central  Google Scholar 

  34. Morrison, C. & Hero, J. M. Geographic variation in life-history characteristics of amphibians: a review. J. Anim. Ecol. 72, 270–279 (2003).

    Google Scholar 

  35. Caruso, N. M. & Rissler, L. J. Demographic consequences of climate variation along an elevational gradient for a montane terrestrial salamander. Popul. Ecol. 61, 171–182 (2019).

    Google Scholar 

  36. Hardy, B. M. et al. Compensatory recruitment unlikely in high‐elevation amphibian populations challenged with disease. J. Appl. Ecol. 60, 121–131 (2022).

    Google Scholar 

  37. Scheele, B. C. et al. Landscape context influences chytrid fungus distribution in an endangered European amphibian. Anim. Conserv. 18, 480–488 (2015).

    Google Scholar 

  38. Maher, S. P., Ellis, C., Gage, K. L., Enscore, R. E. & Peterson, A. T. Range-wide determinants of plague distribution in North America. Am. J. Tropical Med. Hyg. 83, 736 (2010).

    Google Scholar 

  39. Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    CAS  PubMed  Google Scholar 

  40. Cardillo, M., Dinnage, R. & McAlister, W. The relationship between environmental niche breadth and geographic range size across plant species. J. Biogeogr. 46, 97–109 (2019).

    Google Scholar 

  41. Cummins, D., Kennington, W. J., Rudin‐Bitterli, T. & Mitchell, N. J. A genome‐wide search for local adaptation in a terrestrial‐breeding frog reveals vulnerability to climate change. Glob. Change Biol. 25, 3151–3162 (2019).

    Google Scholar 

  42. Bachmann, J. C. & Van Buskirk, J. Adaptation to elevation but limited local adaptation in an amphibian. Evolution 75, 956–969 (2021).

    PubMed  Google Scholar 

  43. Reside, A. E. et al. Beyond the model: expert knowledge improves predictions of species’ fates under climate change. Ecol. Appl. 29, e01824 (2019).

    PubMed  Google Scholar 

  44. Sopniewski, J., Scheele, B. C. & Cardillo, M. Predicting the distribution of Australian frogs and their overlap with Batrachochytrium dendrobatidis under climate change. Divers. Distrib. 28, 1255–1268 (2022).

    Google Scholar 

  45. Savage, A. E. & Zamudio, K. R. MHC genotypes associate with resistance to a frog-killing fungus. Proc. Natl Acad. Sci. USA 108, 16705–16710 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Scheele, B. C. et al. Disease-associated change in an amphibian life-history trait. Oecologia 184, 825–833 (2017).

    PubMed  Google Scholar 

  47. Roznik, E. A., Sapsford, S. J., Pike, D. A., Schwarzkopf, L. & Alford, R. A. Condition-dependent reproductive effort in frogs infected by a widespread pathogen. Proc. R. Soc. Lond. B 282, 20150694 (2015).

    Google Scholar 

  48. Stevenson, L. A. et al. Variation in thermal performance of a widespread pathogen, the amphibian chytrid fungus Batrachochytrium dendrobatidis. PLoS ONE 8, e73830 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. van Riper, C. III, van Riper, S. G., Goff, M. L. & Laird, M. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol. Monogr. 56, 327–344 (1986).

    Google Scholar 

  50. Burke, K. L. Niche contraction of American chestnut in response to chestnut blight. Can. J. For. Res. 42, 614–620 (2012).

    Google Scholar 

  51. Doherty, T. S., Dickman, C. R., Nimmo, D. G. & Ritchie, E. G. Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biol. Conserv. 190, 60–68 (2015).

    Google Scholar 

  52. The IUCN Red List of Threatened Species. Version 2021–3 (IUCN, accessed December 2021); https://www.iucnredlist.org

  53. Breiner, F. T., Guisan, A., Nobis, M. P. & Bergamini, A. Including environmental niche information to improve IUCN Red List assessments. Divers. Distrib. 23, 484–495 (2017).

    Google Scholar 

  54. von Takach, B., Scheele, B. C., Moore, H., Murphy, B. P. & Banks, S. C. Patterns of niche contraction identify vital refuge areas for declining mammals. Divers. Distrib. 26, 1467–1482 (2020).

    Google Scholar 

  55. Atlas of Living Australia. Occurrence Records Download on 2021-11-10 (ALA, 2021); https://doi.org/10.26197/ala.ce7f5cdf-5d26-4dd2-9f53-222586068405

  56. GBIF Occurrence Download 10 November 2021 (GBIF, 2021); https://doi.org/10.15468/dl.eurhxu

  57. Rowley, J. J. & Callaghan, C. T. The FrogID dataset: expert-validated occurrence records of Australia’s frogs collected by citizen scientists. ZooKeys 912, 139 (2020).

    PubMed  PubMed Central  Google Scholar 

  58. Hoskin, C., Grigg, G., Stewart, D. & McDonald, S. Frogs of Australia—A Complete Electronic Field Guide to Australian Frogs (Ug Media, 2015); https://espace.library.uq.edu.au/view/UQ:375857

  59. Bivand, R. et al. rgdal: bindings for the geospatial data abstraction library. R package version 1.4-8 (2019).

  60. Bivand, R., Rundel, C. & Pebesma, E. rgeos: interface to geometry engine-open source (GEOS). R package version 0.3-26 (2017).

  61. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  62. Anstis, M. Tadpoles and Frogs of Australia (New Holland Publishers, 2013).

  63. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  64. Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).

    Google Scholar 

  65. Martínez‐Freiría, F., Tarroso, P., Rebelo, H. & Brito, J. C. Contemporary niche contraction affects climate change predictions for elephants and giraffes. Divers. Distrib. 22, 432–444 (2015).

    Google Scholar 

  66. Monsarrat, S., Novellie, P., Rushworth, I. & Kerley, G. Shifted distribution baselines: neglecting long-term biodiversity records risks overlooking potentially suitable habitat for conservation management. Phil. Trans. R. Soc. B 374, 20190215 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Blonder, B. et al. New approaches for delineating n‐dimensional hypervolumes. Methods Ecol. Evol. 9, 305–319 (2018).

    Google Scholar 

  68. Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n‐dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).

    Google Scholar 

  69. Pack, K. E., Mieszkowska, N. & Rius, M. Rapid niche shifts as drivers for the spread of a non‐indigenous species under novel environmental conditions. Divers. Distrib. 28, 596–610 (2022).

    Google Scholar 

  70. Pili, A. N., Tingley, R., Sy, E. Y., Diesmos, M. L. L. & Diesmos, A. C. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Sci. Rep. 10, 7972 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mammola, S. & Cardoso, P. Functional diversity metrics using kernel density n‐dimensional hypervolumes. Methods Ecol. Evol. 11, 986–995 (2020).

    Google Scholar 

  72. Pateiro-Lopez, B., Rodriguez-Casal, A. & Pateiro-Lopez, M. B. alphahull: generalization of the convex hull of a sample of points in the plane. R package version 2 (2016).

  73. Pebesma, E. et al. sp: classes and methods for spatial data. R package version 1.4-7 (2023).

  74. Hijmans, R. J. et al. raster: geographic data analysis and modeling. R package version 3.5-15 (2021).

  75. Mapping Standards and Data Quality for the IUCN Red List Spatial Data (IUCN, 2021); https://www.iucnredlist.org/resources/mappingstandards#:~:text=The%20Mapping%20Standards%20and%20Data,version%201.19%20 (May%202021)

  76. Carvalho, J. C. & Cardoso, P. Decomposing the causes for niche differentiation between species using hypervolumes. Front. Ecol. Evol. 8, 243 (2020).

    Google Scholar 

  77. Kellner, K. jagsUI: a wrapper around rjags to streamline JAGS analyses. R package version 1.5.2 (2019).

Download references

Acknowledgements

B.C.S. was supported by The Australian Research Council through a Discovery Early Career Research Award (DE200100121). FrogID data were used with the permission of the Australian Museum.

Author information

Authors and Affiliations

Authors

Contributions

B.C.S. secured funding. B.C.S., R.P.D., G.W.H., M.C. and J.S. developed the study questions and design. B.C.S., G.W.H., G.R.G., C.J.H., M.M., D.N. and J.J.L.R. checked species records. J.S. and R.P.D. led analyses. B.C.S. wrote the first draft of the paper and all authors contributed substantially to revisions.

Corresponding author

Correspondence to Ben C. Scheele.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Luis Escobar, Adrián Garcia Rodriguez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–57.

Reporting Summary

Peer Review File

Supplementary Data

Metadata on species included in the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheele, B.C., Heard, G.W., Cardillo, M. et al. An invasive pathogen drives directional niche contractions in amphibians. Nat Ecol Evol 7, 1682–1692 (2023). https://doi.org/10.1038/s41559-023-02155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02155-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing