Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A vision for incorporating human mobility in the study of human–wildlife interactions

Abstract

As human activities increasingly shape land- and seascapes, understanding human–wildlife interactions is imperative for preserving biodiversity. Habitats are impacted not only by static modifications, such as roads, buildings and other infrastructure, but also by the dynamic movement of people and their vehicles occurring over shorter time scales. Although there is increasing realization that both components of human activity substantially affect wildlife, capturing more dynamic processes in ecological studies has proved challenging. Here we propose a conceptual framework for developing a ‘dynamic human footprint’ that explicitly incorporates human mobility, providing a key link between anthropogenic stressors and ecological impacts across spatiotemporal scales. Specifically, the dynamic human footprint integrates a range of metrics to fully acknowledge the time-varying nature of human activities and to enable scale-appropriate assessments of their impacts on wildlife behaviour, demography and distributions. We review existing terrestrial and marine human-mobility data products and provide a roadmap for how these could be integrated and extended to enable more comprehensive analyses of human impacts on biodiversity in the Anthropocene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Motivation for the development of a dynamic human footprint.
Fig. 2: Measuring the dynamic human footprint.
Fig. 3: Timeline of the availability of different human-activity-data products.
Fig. 4: Constructing the dynamic human footprint.

Similar content being viewed by others

References

  1. Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).

    Article  PubMed  Google Scholar 

  2. Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Theobald, D. M. et al. Earth transformed: detailed mapping of global human modification from 1990 to 2017. Earth Syst. Sci. Data 12, 1953–1972 (2020).

    Article  Google Scholar 

  4. Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. O’Hara, C. C., Frazier, M. & Halpern, B. S. At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science 372, 84–87 (2021).

    Article  PubMed  Google Scholar 

  6. Wilson, M. W. et al. Ecological impacts of human-induced animal behaviour change. Ecol. Lett. 23, 1522–1536 (2020).

    Article  PubMed  Google Scholar 

  7. Tablado, Z. & Jenni, L. Determinants of uncertainty in wildlife responses to human disturbance. Biol. Rev. 92, 216–233 (2017).

    Article  PubMed  Google Scholar 

  8. Barrett, L. P., Stanton, L. A. & Benson-Amram, S. The cognition of ‘nuisance’ species. Anim. Behav. 147, 167–177 (2019).

    Article  Google Scholar 

  9. Schell, C. J. et al. The evolutionary consequences of human–wildlife conflict in cities. Evol. Appl. 14, 178–197 (2021).

    Article  PubMed  Google Scholar 

  10. Torres, A., Jaeger, J. A. G. & Alonso, J. C. Assessing large-scale wildlife responses to human infrastructure development. Proc. Natl Acad. Sci. USA 113, 8472–8477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

  12. Tucker, M.A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Ramírez-Delgado, J. P. et al. Matrix condition mediates the effects of habitat fragmentation on species extinction risk. Nat. Commun. 13, 595 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pillay, R. et al. Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity. Nat. Ecol. Evol. 6, 1840–1849 (2022).

    Article  PubMed  Google Scholar 

  15. Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. O’Bryan, C. J. et al. Intense human pressure is widespread across terrestrial vertebrate ranges. Glob. Ecol. Conserv. 21, e00882 (2020).

    Article  Google Scholar 

  17. Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rutz, C. Studying pauses and pulses in human mobility and their environmental impacts. Nat. Rev. Earth Environ. 3, 157–159 (2022).

    Article  Google Scholar 

  19. Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 4, 1156–1159 (2020).

    Article  PubMed  Google Scholar 

  20. Demšar, U. et al. Establishing the integrated science of movement: bringing together concepts and methods from animal and human movement analysis. Int. J. Geogr. Inf. Sci. 35, 1273–1308 (2021).

    Article  Google Scholar 

  21. Hale, T. et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 5, 529–538 (2021).

    Article  PubMed  Google Scholar 

  22. Corradini, A. et al. Effects of cumulated outdoor activity on wildlife habitat use. Biol. Conserv. 253, 108818 (2021).

    Article  Google Scholar 

  23. Wilson, A. A. et al. Artificial night light and anthropogenic noise interact to influence bird abundance over a continental scale. Glob. Chang. Biol. 27, 3987–4004 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 25, 811–826 (2019).

    Article  PubMed  Google Scholar 

  26. Riggio, J. et al. Global human influence maps reveal clear opportunities in conserving Earth’s remaining intact terrestrial ecosystems. Glob. Chang. Biol. 26, 4344–4356 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ericsson Mobility Report November 2021 (Ericcson, 2021).

  28. Barbosa, H. et al. Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018).

    Article  Google Scholar 

  29. Lee, K. & Sener, I. N. Emerging data for pedestrian and bicycle monitoring: sources and applications. Transp. Res. Interdiscip. Perspect. 4, 100095 (2020).

    Google Scholar 

  30. Keßler, C. & McKenzie, G. A geoprivacy manifesto. Trans. GIS 22, 3–19 (2018).

    Article  Google Scholar 

  31. Calabrese, F., Di Lorenzo, G., Liu, L. & Ratti, C. Estimating origin-destination flows using mobile phone location data. IEEE Pervasive Comput. 10, 36–44 (2011).

    Article  Google Scholar 

  32. Palmer, J. R. B. et al. New approaches to human mobility: using mobile phones for demographic research. Demography 50, 1105–1128 (2012).

    Article  Google Scholar 

  33. Deville, P. et al. Dynamic population mapping using mobile phone data. Proc. Natl Acad. Sci. USA 111, 15888–15893 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roy, A., Nelson, T. A., Fotheringham, A. S. & Winters, M. Correcting bias in crowdsourced data to map bicycle ridership of all bicyclists. Urban Sci. 3, 62 (2019).

    Article  Google Scholar 

  35. Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584, 257–261 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Noi, E., Rudolph, A. & Dodge, S. Assessing COVID-induced changes in spatiotemporal structure of mobility in the United States in 2020: a multi-source analytical framework. Int. J. Geogr. Inf. Sci. 36, 585–616 (2022).

    Article  Google Scholar 

  37. Santamaria, C. et al. Measuring the impact of COVID-19 confinement measures on human mobility using mobile positioning data. A European regional analysis. Saf. Sci. 132, 104925 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hong, J. The effects of the lockdown on traffic in Glasgow. Urban Big Data Centre https://www.ubdc.ac.uk/news-media/2020/april/the-effects-of-the-lockdown-on-traffic-in-glasgow/#:~:text=Looking%20at%20the%20monthly%20data,shown%20for%20the%20evening%20peak (16 April 2021).

  39. Hong, J., McArthur, D. & Raturi, V. Did safe cycling infrastructure still matter during a COVID-19 lockdown? Sustainability 12, 8672 (2020).

    Article  CAS  Google Scholar 

  40. Shilling, F. et al. A reprieve from US wildlife mortality on roads during the COVID-19 pandemic. Biol. Conserv. 256, 109013 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. March, D., Metcalfe, K., Tintoré, J. & Godley, B. J. Tracking the global reduction of marine traffic during the COVID-19 pandemic. Nat. Commun. 12, 2415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Elvidge, C. D., Ghosh, T., Hsu, F.-C., Zhizhin, M. & Bazilian, M. The dimming of lights in China during the COVID-19 pandemic. Remote Sens. 12, 2851 (2020).

    Article  Google Scholar 

  46. Midway, S. R., Lynch, A. J., Peoples, B. K., Dance, M. & Caffey, R. COVID-19 influences on US recreational angler behavior. PLoS One 16, 1–16 (2021).

    Article  Google Scholar 

  47. Dube, K., Nhamo, G. & Chikodzi, D. COVID-19 pandemic and prospects for recovery of the global aviation industry. J. Air Transp. Manag. 92, 102022 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bates, A. E. et al. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biol. Conserv. 263, 109175 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vîrghileanu, M., Săvulescu, I., Mihai, B.-A., Nistor, C. & Dobre, R. Nitrogen dioxide (NO2) pollution monitoring with Sentinel-5P satellite imagery over Europe during the coronavirus pandemic outbreak. Remote Sens. 12, 3575 (2020).

    Article  Google Scholar 

  50. Levin, N. et al. Remote sensing of night lights: a review and an outlook for the future. Remote Sens. Environ. 237, 111443 (2020).

    Article  Google Scholar 

  51. Román, M. O. et al. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 210, 113–143 (2018).

    Article  Google Scholar 

  52. Veefkind, J. P. et al. TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 120, 70–83 (2012).

    Article  Google Scholar 

  53. Venter, Z. S., Aunan, K., Chowdhury, S. & Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl Acad. Sci. USA 117, 18984–18990 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Watson, J. E. M. et al. Persistent disparities between recent rates of habitat conversion and protection and implications for future global conservation targets. Conserv. Lett. 9, 413–421 (2016).

    Article  Google Scholar 

  55. Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kühl, H. S. et al. Human impact erodes chimpanzee behavioral diversity. Science 363, 1453–1455 (2019).

    Article  PubMed  Google Scholar 

  57. Keys, P. W., Barnes, E. A. & Carter, N. H. A machine-learning approach to human footprint index estimation with applications to sustainable development. Environ. Res. Lett. 16, 044061 (2021).

    Article  Google Scholar 

  58. Wu, Y., Mooring, T. A. & Linz, M. Policy and weather influences on mobility during the early US COVID-19 pandemic. Proc. Natl Acad. Sci. USA 118, e2018185118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ciavarella, C. & Ferguson, N. M. Deriving fine-scale models of human mobility from aggregated origin-destination flow data. PLOS Comput. Biol. 17, e1008588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tatem, A. J. WorldPop, open data for spatial demography. Sci. Data 4, 170004 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ruktanonchai, N. W., Ruktanonchai, C. W., Floyd, J. R. & Tatem, A. J. Using Google Location History data to quantify fine-scale human mobility. Int. J. Health Geogr. 17, 28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brum-Bastos, V. S., Long, J. A. & Demšar, U. Weather effects on human mobility: a study using multi-channel sequence analysis. Comput. Environ. Urban Syst. 71, 131–152 (2018).

    Article  Google Scholar 

  63. Tóth, G. et al. Inequality is rising where social network segregation interacts with urban topology. Nat. Commun. 12, 1143 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. McCauley, D. J. et al. Ending hide and seek at sea. Science 351, 1148–1150 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Brown, J. S. Vigilance, patch use and habitat selection: foraging under predation risk. Evol. Ecol. Res. 1, 49–71 (1999).

    Google Scholar 

  66. Laundré, J. W., Hernández, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).

    Article  Google Scholar 

  67. Smith, J. A. et al. Fear of the human super predator reduces feeding time in large carnivores. Proc. R. Soc. B Biol. Sci. 284, 20170433 (2017).

    Article  Google Scholar 

  68. Bonnot, N. C. et al. Fear of the dark? Contrasting impacts of humans versus lynx on diel activity of roe deer across Europe. J. Anim. Ecol. 89, 132–145 (2020).

    Article  PubMed  Google Scholar 

  69. Gehr, B. et al. Stay home, stay safe—site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J. Anim. Ecol. 89, 1329–1339 (2020).

    Article  PubMed  Google Scholar 

  70. Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, N. H. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Berger, J. Fear, human shields and the redistribution of prey and predators in protected areas. Biol. Lett. 3, 620–623 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ditmer, M. A. et al. Artificial nightlight alters the predator–prey dynamics of an apex carnivore. Ecography 44, 149–161 (2021).

    Article  Google Scholar 

  73. Spaul, R. J. & Heath, J. A. Nonmotorized recreation and motorized recreation in shrub-steppe habitats affects behavior and reproduction of golden eagles (Aquila chrysaetos). Ecol. Evol. 6, 8037–8049 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Derryberry, E. P., Phillips, J. N., Derryberry, G. E., Blum, M. J. & Luther, D. Singing in a silent spring: birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 370, 575–579 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Huveneers, C. et al. The power of national acoustic tracking networks to assess the impacts of human activity on marine organisms during the COVID-19 pandemic. Biol. Conserv. 256, 108995 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wilmers, C. C., Nisi, A. C. & Ranc, N. COVID-19 suppression of human mobility releases mountain lions from a landscape of fear. Curr. Biol. 31, 3952–3955.E3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Marion, S. et al. Red deer exhibit spatial and temporal responses to hiking activity. Wildlife Biol. 2021, wlb.00853 (2021).

    Article  Google Scholar 

  78. DeRose-Wilson, A. L. et al. Piping plover chick survival negatively correlated with beach recreation. J. Wildl. Manag. 82, 1608–1616 (2018).

    Article  Google Scholar 

  79. Perkins, S. E., Shilling, F. & Collinson, W. Anthropause opportunities: experimental perturbation of road traffic and the potential effects on wildlife. Front. Ecol. Evol. 10, 833129 (2022).

    Article  Google Scholar 

  80. Pokorny, B., Cerri, J. & Bužan, E. Wildlife roadkill and COVID-19: a biologically significant, but heterogeneous, reduction. J. Appl. Ecol. 59, 1291–1301 (2022).

    Article  CAS  Google Scholar 

  81. Hentati-Sundberg, J., Berglund, P.-A., Hejdström, A. & Olsson, O. COVID-19 lockdown reveals tourists as seabird guardians. Biol. Conserv. 254, 108950 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Swaddle, J. P. et al. A framework to assess evolutionary responses to anthropogenic light and sound. Trends Ecol. Evol. 30, 550–560 (2015).

    Article  PubMed  Google Scholar 

  83. Dominoni, D. M. et al. Why conservation biology can benefit from sensory ecology. Nat. Ecol. Evol. 4, 502–511 (2020).

    Article  PubMed  Google Scholar 

  84. Merckx, T. et al. Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera. Proc. Natl Acad. Sci. USA 118, e2106006118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Senzaki, M. et al. Sensory pollutants alter bird phenology and fitness across a continent. Nature 587, 605–609 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Catford, J. A., Wilson, J. R. U., Pyšek, P., Hulme, P. E. & Duncan, R. P. Addressing context dependence in ecology. Trends Ecol. Evol. 37, 158–170 (2022).

    Article  PubMed  Google Scholar 

  87. Van Doren, B. M. et al. Drivers of fatal bird collisions in an urban center. Proc. Natl Acad. Sci. USA 118, e2101666118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Chang. 8, 992–996 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wall, J. et al. Human footprint and protected areas shape elephant range across Africa. Curr. Biol. 31, 2437–2445.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Suraci, J. P. et al. Disturbance type and species life history predict mammal responses to humans. Glob. Chang. Biol. 27, 3718–3731 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. La Sorte, F. A. et al. The role of artificial light at night and road density in predicting the seasonal occurrence of nocturnally migrating birds. Divers. Distrib. 28, 992–1009 (2022).

    Article  Google Scholar 

  92. Cooke, S. C., Balmford, A., Donald, P. F., Newson, S. E. & Johnston, A. Roads as a contributor to landscape-scale variation in bird communities. Nat. Commun. 11, 3125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Otto, S. P. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B Biol. Sci. 285, 20182047 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Schmidt, C., Domaratzki, M., Kinnunen, R. P., Bowman, J. & Garroway, C. J. Continent-wide effects of urbanization on bird and mammal genetic diversity. Proc. R. Soc. B Biol. Sci. 287, 20192497 (2020).

    Article  CAS  Google Scholar 

  95. Schmidt, C. & Garroway, C. J. Systemic racism alters wildlife genetic diversity. Proc. Natl Acad. Sci. USA 119, e2102860119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sequeira, A. M. M. et al. A standardisation framework for bio-logging data to advance ecological research and conservation. Methods Ecol. Evol. 12, 996–1007 (2021).

    Article  Google Scholar 

  97. Harrison, A. L. et al. The political biogeography of migratory marine predators. Nat. Ecol. Evol. 2, 1571–1578 (2018).

    Article  PubMed  Google Scholar 

  98. Kauffman, M. J. et al. Mapping out a future for ungulate migrations. Science 372, 566–569 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Bennett, N. J. et al. Conservation social science: understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108 (2017).

    Article  Google Scholar 

  100. Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 4497, eaay4497 (2020).

    Article  Google Scholar 

  101. Ellis-Soto, D., Chapman, M. & Locke, D. H. Uneven biodiversity sampling across redlined urban areas in the United States. Preprint at EcoEvoRxiv https://doi.org/10.32942/osf.io/ex6w2 (2022).

  102. Stokes, E. C. & Román, M. O. Tracking COVID-19 urban activity changes in the Middle East from nighttime lights. Sci. Rep. 12, 8096 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Black, R. et al. The effect of environmental change on human migration. Glob. Environ. Chang. 21, S3–S11 (2011).

    Article  Google Scholar 

  104. Rutz, C. Register animal-tracking tags to boost conservation. Nature 609, 221 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Halpern, B. S., et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).

Download references

Acknowledgements

This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society (NGS-82515R-20) (both grants to C.R.) and endorsed by the United Nations Decade of Ocean Science for Sustainable Development. We thank the members of the initiative’s steering committee as well as N. C. Harris for helpful discussion and feedback. D.E.-S. acknowledges support from NASA FINESST (80NSSC22K1535) and the Yale Institute for Biospheric Studies. R.K. acknowledges support from NASA (80NSSC21K1182). This research was supported by the Max Planck-Yale Center for Biodiversity Movement and Global Change and also by the NASA Internet of Animals project through Caltech Jet Propulsion Laboratory contract 1675801 (support to W.J.). F.C. contributed to this work partly under the IRD Fellowship 2021–2022 at Fondation IMéRA, Institute for Advanced Studies at Aix-Marseille Université.

Author information

Authors and Affiliations

Authors

Contributions

D.E.-S. and R.Y.O. co-conceived and conceptualized the article with significant contributions from C.R. and W.J. and feedback from all co-authors (V.B.-B., U.D., B.J., J.A.L., F.C., F.O., N.Q., M.H., R.K., M.-C.L., T.M., R.P., D.W.S., M.A.T. and Y.R.-C.). D.E.-S. and R.Y.O. led the writing of the article with significant contributions from C.R., input from V.B.-B., J.A.L. and U.D., and feedback from all co-authors. D.E.-S. and R.Y.O. led the development of the figures with input from C.R., W.J., V.B.-B., N.Q., B.J. and R.P. and feedback from all co-authors (V.B.-B., U.D., B.J., J.A.L., F.C., F.O., N.Q., M.H., R.K., M.-C.L., T.M., R.P., D.W.S., M.A.T. and Y.R.-C.). Preparation of the article was coordinated by D.E.-S., R.Y.O., C.R. and W.J. All co-authors approved the submission of the article.

Corresponding authors

Correspondence to Diego Ellis-Soto or Ruth Y. Oliver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Marta Gonzalez, Francesca Verones and James Watson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis-Soto, D., Oliver, R.Y., Brum-Bastos, V. et al. A vision for incorporating human mobility in the study of human–wildlife interactions. Nat Ecol Evol 7, 1362–1372 (2023). https://doi.org/10.1038/s41559-023-02125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02125-6

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene