Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Greater bee diversity is needed to maintain crop pollination over time

Abstract

The current biodiversity crisis underscores the need to understand how biodiversity loss affects ecosystem function in real-world ecosystems. At any one place and time, a few highly abundant species often provide the majority of function, suggesting that function could be maintained with relatively little biodiversity. However, biodiversity may be critical to ecosystem function at longer timescales if different species are needed to provide function at different times. Here we show that the number of wild bee species needed to maintain a threshold level of crop pollination increased steeply with the timescale examined: two to three times as many bee species were needed over a growing season compared to on a single day and twice as many species were needed over six years compared to during a single year. Our results demonstrate the importance of pollinator biodiversity to maintaining pollination services across time and thus to stable agricultural output.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Number of bee species needed for pollination across multiple dates within a flowering season.
Fig. 2: Number of bee species needed for pollination across multiple years.
Fig. 3: Accumulation curves of pollination provided at a single site on three different days, across which aggregate bee abundance varied from low (yellow) to medium (blue) and high (purple).

Similar content being viewed by others

Data availability

The data used to generate the results of this study have been deposited in Figshare (https://doi.org/10.6084/m9.figshare.20083916, https://doi.org/10.6084/m9.figshare.20010191, https://doi.org/10.6084/m9.figshare.20010179). The bee specimens on which the data are based are permanently housed at Rutgers University and University of California, Davis.

Code availability

The R code used to generate the results of this study is available on GitHub (https://github.com/nlemanski/Bee_diversity_ecosystem_function).

References

  1. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article  PubMed  Google Scholar 

  4. Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).

    Article  PubMed  Google Scholar 

  5. Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, S. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc. Biol. Sci. 287, 20202063 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).

    Article  PubMed  Google Scholar 

  8. Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Barnes, A. D. et al. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150279 (2016).

    Article  Google Scholar 

  10. Manning, P. & Cutler, G. C. Ecosystem functioning is more strongly impaired by reducing dung beetle abundance than by reducing species richness. Agric. Ecosyst. Environ. 264, 9–14 (2018).

    Article  Google Scholar 

  11. van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. Camb. Philos. Soc. 94, 1220–1245 (2019).

    PubMed  Google Scholar 

  12. Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).

    Article  Google Scholar 

  13. Loreau, M. Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl Acad. Sci. USA 95, 5632–5636 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).

    Google Scholar 

  16. Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).

    Article  Google Scholar 

  19. Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771–1782 (2018).

    Article  PubMed  Google Scholar 

  20. McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).

    Article  PubMed  Google Scholar 

  21. Genung, M. A. et al. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services. Ecology 98, 1807–1816 (2017).

    Article  PubMed  Google Scholar 

  22. Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    Article  PubMed  Google Scholar 

  23. Kleijn, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6, 7414 (2015).

  24. Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).

    Article  Google Scholar 

  25. Lohbeck, M., Bongers, F., Martinez-Ramos, M. & Poorter, L. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology 97, 2772–2779 (2016).

    Article  PubMed  Google Scholar 

  26. Balvanera, P., Kremen, C. & Martínez-Ramos, M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol. Appl. 15, 360–375 (2005).

    Article  Google Scholar 

  27. Maureaud, A. et al. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. Biol. Sci. 286, 20191189 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Genung, M. A., Fox, J. & Winfree, R. Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Glob. Ecol. Biogeogr. 29, 1531–1541 (2020).

    Article  Google Scholar 

  29. Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84, 2628–2642 (2003).

    Article  Google Scholar 

  30. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article  Google Scholar 

  31. Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).

    Article  Google Scholar 

  32. Thompson, P. L., Isbell, F., Loreau, M., O’Connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. Biol. Sci. 285, 20180038 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Qiu, J. & Cardinale, B. J. Scaling up biodiversity–ecosystem function relationships across space and over time. Ecology 101, e03166 (2020).

  34. Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Albrecht, J. et al. Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nat. Ecol. Evol. 5, 1582–1593 (2021).

    Article  PubMed  Google Scholar 

  36. Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shanafelt, D. W. et al. Biodiversity, productivity, and the spatial insurance hypothesis revisited. J. Theor. Biol. 380, 426–435 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).

    Article  CAS  Google Scholar 

  39. Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).

    Article  Google Scholar 

  40. Herrera, C. M. Variation in mutualisms: the spatiotemporal mosaic of a pollinator assemblage. Biol. J. Linn. Soc. Lond. 35, 95–125 (1988).

    Article  Google Scholar 

  41. McCormack, M. L., Adams, T. S., Smithwick, E. A. H. & Eissenstat, D. M. Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology 95, 2224–2235 (2014).

    Article  PubMed  Google Scholar 

  42. Wright, K. W., Vanderbilt, K. L., Inouye, D. W., Bertelsen, C. D. & Crimmins, T. M. Turnover and reliability of flower communities in extreme environments: insights from long-term phenology data sets. J. Arid Environ. 115, 27–34 (2015).

    Article  Google Scholar 

  43. Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008).

    Article  PubMed Central  Google Scholar 

  44. Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).

    Article  PubMed  Google Scholar 

  45. Iserbyt, S. & Rasmont, P. The effect of climatic variation on abundance and diversity of bumblebees: a ten years survey in a mountain hotspot. Ann. Soc. Entomol. Fr. 48, 261–273 (2012).

    Article  Google Scholar 

  46. Houlahan, J. E. et al. Compensatory dynamics are rare in natural ecological communities. Proc. Natl Acad. Sci. USA 104, 3273–3277 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ernest, S. K. M. & Brown, J. H. Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82, 2118–2132 (2001).

    Article  Google Scholar 

  48. Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA 108, 17034–17039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Awasthi, A., Singh, M., Soni, S. K., Singh, R. & Kalra, A. Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME J. 8, 2445–2452 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tuck, S. L. et al. The value of biodiversity for the functioning of tropical forests: Insurance effects during the first decade of the Sabah biodiversity experiment. Proc. Biol. Sci. 283, 20161451 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Perry, C. J., Søvik, E., Myerscough, M. R. & Barron, A. B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc. Natl Acad. Sci. USA 112, 3427–3432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Benjamin, F. E. & Winfree, R. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environ. Entomol. 43, 1574–1583 (2014).

    Article  PubMed  Google Scholar 

  57. Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).

    Article  Google Scholar 

  58. Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).

    Article  Google Scholar 

  59. Baumgärtner, S. The insurance value of biodiversity in the provision of ecosystem services. Nat. Resour. Model. 20, 87–127 (2007).

    Article  Google Scholar 

  60. Manning, P. et al. in Advances in Ecological Research (eds Eisenhauer, N., Bohan, D. A. & Dumbrell, A. J.) 323–356 (Academic Press, 2019).

  61. Naeem, S. Species redundancy and ecosystem reliability. Conserv. Biol. 12, 39–45 (1998).

    Article  Google Scholar 

  62. CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

    Article  PubMed  Google Scholar 

  63. Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).

    Article  Google Scholar 

  64. Liu, D., Chang, P.-H. S., Power, S. A., Bell, J. N. B. & Manning, P. Changes in plant species abundance alter the multifunctionality and functional space of heathland ecosystems. New Phytol. 232, 1238–1249 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Buschke, F. T., Hagan, J. G., Santini, L. & Coetzee, B. W. T. Random population fluctuations bias the Living Planet Index. Nat. Ecol. Evol. 5, 1145–1152 (2021).

    Article  PubMed  Google Scholar 

  66. Almond, R. E. A., Grooten, M. & Peterson, T. Living Planet Report 2020: Bending the Curve of Biodiversity Loss (World Wildlife Fund, 2020).

  67. Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009).

    Article  PubMed  Google Scholar 

  68. Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. The effects of honey bee and bumble bee pollination on fruit set and abortion of cucumber and watermelon. Am. Bee. J. 137, 386–391 (1997).

    Google Scholar 

  70. Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Native bees provide insurance against ongoing honey bee losses. Ecol. Lett. 10, 1105–1113 (2007).

    Article  PubMed  Google Scholar 

  71. Tamburini, G., Bommarco, R., Kleijn, D., van der Putten, W. H. & Marini, L. Pollination contribution to crop yield is often context-dependent: a review of experimental evidence. Agric. Ecosyst. Environ. 280, 16–23 (2019).

    Article  Google Scholar 

  72. Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. Seed production in watermelon: a comparison between two commercially available pollinators. HortScience 33, 28–30 (1998).

    Article  Google Scholar 

  73. Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. Biol. Sci. 287, 20200922 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl Acad. Sci. USA 103, 13890–13895 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sáez, A. Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops. Proc. Biol. Sci. 289, 20220086 (2022).

    PubMed  Google Scholar 

  76. Brittain, C., Williams, N., Kremen, C. & Klein, A. M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. Biol. Sci. 280, 20122767 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Houlahan, J. E. et al. Negative relationships between species richness and temporal variability are common but weak in natural systems. Ecology 99, 2592–2604 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Winfree, R. Global change, biodiversity, and ecosystem services: what can we learn from studies of pollination? Basic Appl. Ecol. 14, 453–460 (2013).

    Article  Google Scholar 

  80. Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).

    Article  PubMed  Google Scholar 

  81. Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).

    Article  PubMed  Google Scholar 

  82. Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).

    Article  PubMed  Google Scholar 

  83. Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Haupt, R. L. & Haupt, S. E. Practical Genetic Algorithms (Wiley, 2004).

  85. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  86. Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of regression models performance. R package version 0.7.0 https://doi.org/10.5281/zenodo.3952174 (2020).

  87. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

  88. Brooks, M. et al. glmmTMB: Generalized linear mixed models using template model builder. R package version 1.1.3 https://glmmtmb.github.io/glmmTMB/ (2022).

  89. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

Download references

Acknowledgements

Funding for this work was provided by the National Science Foundation (NSF) DEB no. 2019863 to R.W., NSF DEB no. 1556885 to N.M.W. and U.S. Department of Agriculture, National Institute of Food and Agriculture, Agriculture and Food Research Initiative no. 65104-05782 to R.W. (principal investigator) and N.M.W. (co-principal investigator).

Author information

Authors and Affiliations

Authors

Contributions

N.J.L., N.M.W. and R.W. conceived the research question and study design. N.M.W. and R.W. oversaw data collection. N.J.L. performed the analyses and wrote the original manuscript draft. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Natalie J. Lemanski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Marcelo Aizen, Amy Iler and Joanne Bennett for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Minimum set analysis on a subsample of the data in which 30 individuals were randomly drawn each different date within a site-year.

We compared the results (dashed blue line) to a null model (solid red line) in which subsamples of 30 individuals were all drawn from the same date. Shaded areas represent the 95% confidence intervals across 100 replicates of the sampling process. Each point represents the mean across all replicates for a single site-year. The difference between the endpoints of the observed and null accumulation curves represents the increase in the minimum set that is due to turnover across days within a year.

Extended Data Fig. 2 Minimum set analysis on a subsample of the data in which 30 individuals were randomly drawn from each different year within a site.

We compared the results (dashed blue line) to a null model (solid red line) in which subsamples of 30 individuals were all drawn from the same year. Thus, confidence intervals include both variation across sites in the number of bee species needed, and uncertainty from the sampling process. Specifically, shaded areas represent the 95% confidence intervals across 100 replicates of the sampling process. Each point represents the mean across all replicates for a single site. The difference between the endpoints of the observed and null accumulation curves represents the increase in number of species needed that is due to turnover in species composition across years.

Extended Data Fig. 3 Phenological windows of bee species observed at eastern watermelon farms.

Horizontal lines show the timing of peak abundance for each bee species observed at the eastern watermelon farms. Phenological data is based on all observations of that species across all datasets collected by the lab. Comparable data for species visiting western watermelon farms was not available.

Extended Data Fig. 4 Phenological windows of bee species observed at blueberry farms.

Horizontal lines show the timing of peak abundance for each bee species observed at the blueberry farms. Phenological data is based on all observations of that species across all datasets collected by the lab.

Extended Data Fig. 5 Sensitivity analysis of the effect of function threshold on the number of bee species needed for analyses done across the growing season within one year.

The function threshold is a percentage of the mean observed pollination per site-date, averaged across all site-dates.

Extended Data Fig. 6 Sensitivity analysis of the effect of function threshold on the number of bee species needed for analyses done across years.

The function threshold is a percentage of the mean observed pollination per site-date, averaged across all site-dates.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemanski, N.J., Williams, N.M. & Winfree, R. Greater bee diversity is needed to maintain crop pollination over time. Nat Ecol Evol 6, 1516–1523 (2022). https://doi.org/10.1038/s41559-022-01847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01847-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing