Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Latitudinal gradients in avian colourfulness

Abstract

It has long been suggested that tropical species are generally more colourful than temperate species, but whether latitudinal gradients in organismal colourfulness exist remains controversial. Here we quantify global latitudinal trends in colourfulness (within-individual colour diversity) by collating and analysing a photographic dataset of whole-body plumage reflectance information for >4,500 species of passerine birds. We show that male and female birds of tropical passerine species are generally more colourful than their temperate counterparts, both on average and in the extreme. We also show that these geographic gradients can be explained in part by the effects of several latitude-related factors related to classic hypotheses for climatic and ecological determinants of organismal colourfulness. Taken together, our results reveal that species’ colourfulness peaks in the tropics for passerine birds, confirming the existence of a long-suspected yet hitherto elusive trend in the distribution of global biodiversity.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The diversity of passerine plumage colours in avian tetrahedral colour space.
Fig. 2: Latitudinal gradients in male and female colourfulness in passerine birds.
Fig. 3: The phylogenetic distribution of male and female colourfulness and its relation to species’ midpoint latitude in passerine birds.
Fig. 4: Predictors of male and female colourfulness in passerine birds.

Data availability

All analysis data are available in Supplementary Data 1. In addition, the phylogenetic trees were downloaded from http://www.birdtree.org, the geographic and ecological data were accessed via BirdLife International’s Data Zone (http://www.datazone.birdlife.org), and the global climate data were downloaded from WorldClim (https://worldclim.org/).

Code availability

The R code is available at https://github.com/christophercooney/Avian-colourfulness.

References

  1. Darwin, C. R. On the Origin of Species, or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).

  2. Wallace, A. R. Natural Selection and Tropical Nature: Essays on Descriptive and Theoretical Biology 2nd edn (Macmillan, 1895).

  3. Darwin, C. R. A Naturalist’s Voyage Round the World (John Murray, 1913).

  4. Wallace, A. R. Colour in nature. Nature 19, 580–581 (1879).

    Article  Google Scholar 

  5. Dalrymple, R. L. et al. Abiotic and biotic predictors of macroecological patterns in bird and butterfly coloration. Ecol. Monogr. 88, 204–224 (2018).

    Article  Google Scholar 

  6. Adams, J. M., Kang, C. & June-Wells, M. Are tropical butterflies more colorful? Ecol. Res. 29, 685–691 (2014).

    Article  Google Scholar 

  7. Bailey, S. F. Latitudinal gradients in colors and patterns of passerine birds. Condor 80, 372–381 (1978).

    Article  Google Scholar 

  8. Wilson, M. F. & Von Neaumann, R. A. Why are neotropical birds more colourful than North American birds? Avicultural Mag. 78, 141–147 (1972).

    Google Scholar 

  9. Dalrymple, R. L. et al. Birds, butterflies and flowers in the tropics are not more colourful than those at higher latitudes. Glob. Ecol. Biogeogr. 24, 1424–1432 (2015).

    Article  Google Scholar 

  10. Friedman, N. R. & Remeš, V. Ecogeographical gradients in plumage coloration among Australasian songbird clades. Glob. Ecol. Biogeogr. 26, 261–274 (2017).

    Article  Google Scholar 

  11. Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).

    CAS  PubMed  Article  Google Scholar 

  12. Dunn, P. O., Armenta, J. K. & Whittingham, L. A. Natural and sexual selection act on different axes of variation in avian plumage color. Sci. Adv. 1, e1400155 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  13. Stoddard, M. C. & Prum, R. O. How colorful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 22, 1042–1052 (2011).

    Article  Google Scholar 

  14. Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).

    PubMed  Article  Google Scholar 

  15. Stoddard, M. C. & Prum, R. O. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of New World buntings. Am. Nat. 171, 755–776 (2008).

    PubMed  Article  Google Scholar 

  16. Delhey, K. The colour of an avifauna: a quantitative analysis of the colour of Australian birds. Sci. Rep. 5, 18514 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  18. Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    CAS  PubMed  Article  Google Scholar 

  19. Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065–1080 (1991).

    PubMed  Article  Google Scholar 

  20. Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. Camb. Phil. Soc. 94, 1294–1316 (2019).

    Google Scholar 

  21. Marchetti, K. Dark habitats and bright birds illustrate the role of the environment in species divergence. Nature 362, 149–152 (1993).

    Article  Google Scholar 

  22. Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).

    Article  Google Scholar 

  23. Schemske, D. W. in Speciation and Patterns of Diversity Vol. 12 (eds Butlin, R. et al.) 219–239 (Cambridge Univ. Press, 2009).

  24. Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

    Article  Google Scholar 

  25. MacArthur, R. H. Patterns of communities in the tropics. Biol. J. Linn. Soc. 1, 19–30 (1969).

    Article  Google Scholar 

  26. Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    CAS  PubMed  Article  Google Scholar 

  27. Cooney, C. R. et al. Sexual selection predicts the rate and direction of colour divergence in a large avian radiation. Nat. Commun. 10, 1773 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. Cooney, C. R., MacGregor, H. E. A., Seddon, N. & Tobias, J. A. Multi-modal signal evolution in birds: re-assessing a standard proxy for sexual selection. Proc. R. Soc. B 285, 20181557 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  29. van der Bijl, W. et al. Butterfly dichromatism primarily evolved via Darwin’s, not Wallace’s, model. Evol. Lett. 4, 545–555 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  30. Darwin, C. R. The Descent of Man, and Selection in Relation to Sex (John Murray, 1871).

  31. Tobias, J. A., Montgomerie, R. & Lyon, B. E. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Phil. Trans. R. Soc. B 367, 2274–2293 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  32. Galván, I., Negro, J. J., Rodríguez, A. & Carrascal, L. M. On showy dwarfs and sober giants: body size as a constraint for the evolution of bird plumage colouration. Acta Ornithol. 48, 65–80 (2013).

    Article  Google Scholar 

  33. Kiltie, R. A. Scaling of visual acuity with body size in mammals and birds. Funct. Ecol. 14, 226–234 (2000).

    Article  Google Scholar 

  34. Zahavi, A. & Zahavi, A. The Handicap Principle (Oxford Univ. Press, 1997).

  35. Badyaev, A. V. & Hill, G. E. Avian sexual dichromatism in relation to phylogeny and ecology. Annu. Rev. Ecol. Evol. Syst. 34, 27–49 (2003).

    Article  Google Scholar 

  36. Simpson, R. K., Johnson, M. A. & Murphy, T. G. Migration and the evolution of sexual dichromatism: evolutionary loss of female coloration with migration among wood-warblers. Proc. R. Soc. B 282, 20150375 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  37. Helferich, G. Humboldt’s Cosmos (Tantor eBooks, 2011).

  38. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  PubMed  Article  Google Scholar 

  39. He, Y. et al. Segmenting biological specimens from photos to understand the evolution of UV plumage in passerine birds. Preprint at bioRxiv https://doi.org/10.1101/2021.07.22.453339 (2021).

  40. Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder–decoder with atrous separable convolution for semantic image segmentation. Preprint at arXiv https://doi.org/10.48550/arXiv.1802.02611 (2018).

  41. Hussein, B. R., Malik, O. A., Ong, W.-H. & Slik, J. W. F. in Computational Science and Technology Lecture Notes in Electrical Engineering (eds Alfred, R. et al.) 321–330 (Springer Singapore, 2020).

  42. Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  43. Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.5-15 https://CRAN.R-project.org/package=raster (2022).

  44. Maia, R., Gruson, H., Endler, J. A., White, T. E. & O’Hara, R. B. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evol. 10, 1097–1107 (2019).

    Article  Google Scholar 

  45. Stoddard, M. C. et al. Wild hummingbirds discriminate nonspectral colors. Proc. Natl Acad. Sci. USA 117, 15112–15122 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Gomez, D. & Théry, M. Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a neotropical rainforest bird community. Am. Nat. 169, S42–S61 (2007).

    PubMed  Article  Google Scholar 

  47. Blonder, B. Do hypervolumes have holes? Am. Nat. 187, E93–E105 (2016).

    PubMed  Article  Google Scholar 

  48. Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS  PubMed  Article  Google Scholar 

  49. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  50. Beckmann, M. et al. glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372–383 (2014).

    Article  Google Scholar 

  51. Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).

    Article  Google Scholar 

  52. Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Phil. Trans. R. Soc. B 374, 20190012 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  53. Dunn, P. O., Whittingham, L. A. & Pitcher, T. E. Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55, 161–175 (2001).

    CAS  PubMed  Article  Google Scholar 

  54. Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).

    Article  Google Scholar 

  55. Hawkins, B. A. et al. Structural bias in aggregated species-level variables driven by repeated species co-occurrences: a pervasive problem in community and assemblage data. J. Biogeogr. 44, 1199–1211 (2017).

    Article  Google Scholar 

  56. Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  57. Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  58. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/

Download references

Acknowledgements

We thank M. Adams, H. van Grouw, R. Prys-Jones and A. Bond from the Bird Group at the Natural History Museum at Tring for providing access to and expertise in the collection, N. Brett for assistance with data collection, and F. Babarović, J. Kennedy, L. Rombault and A. Slavenko for helpful discussion and feedback. This work was funded by a Leverhulme Early Career Fellowship (ECF-2018-101) and a Natural Environment Research Council Independent Research Fellowship (NE/T01105X/1) to C.R.C., a Leverhulme Centre for Advanced Biological Modelling PhD studentship to Y.H., a Royal Society Wolfson Merit Award (WM170050, APEX APX\R1\191045) and a National Research, Development and Innovation Office of Hungary grant (ÉLVONAL KKP-126949, K-116310) to T.S., and a European Research Council grant (615709, Project ‘ToLERates’) and a Royal Society University Research Fellowship (UF120016, URF\R\180006) to G.H.T.

Author information

Authors and Affiliations

Authors

Contributions

C.R.C. and G.H.T. designed the research. C.R.C., Z.K.V., L.O.N., C.J.A.M., M.D.J., A.L. and T.S. collected the data. C.R.C. and Y.H. conducted the analyses. C.R.C. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Christopher R. Cooney.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks José Alexandre Diniz Filho, James Dale and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The distribution of sampled species and illustrations of the colouration data workflow and colour diversity metrics used in this study.

a, The proportion of passerine species sampled per grid cell. Grid cell size is 50 × 50 km (Behrman projection) and only cells containing at least 5 passerine species are plotted. b, The phylogenetic distribution of sampled species (blue, n = 4,527) relative to the whole passerine radiation (n = 5,966). c, An example showing the workflow used to extract whole-body reflectance data from specimen images, as applied to lateral (side) view images. An analogous workflow is applied to the other two views of the specimen (dorsal and ventral). The resulting sets of measurements for each view are then combined into a final dataset of 1,500 measurements for each specimen, capturing whole-body plumage colouration. d, The relationship between specimen-level scores of colour loci and colour volume based on a ultraviolet-sensitive (UVS) visual system.

Extended Data Fig. 2 Latitudinal gradients in male and female colourfulness in passerine birds using colour volume.

a, Mean colour volume scores for grid cell assemblages, separately for males (top) and females (bottom). b, c, Distributions of mean species’ colour volume scores for grid cells (b) and ecoregions (c) with respect to latitude, separately for males (top) and females (bottom). Grid cell size is 50 × 50 km for all panels (Behrman projection) and only cells containing at least 5 sampled species are plotted. Colour volumes are based on an ultraviolet- sensitive (UVS) visual system. Note: colour volume values are multiplied by 1000.

Extended Data Fig. 3 Geographic distributions of male and female colourfulness in passerine birds using different datasets.

Grid cell size is 50 × 50 km for all panels (Behrman projection) and only cells containing at least 5 sampled species are plotted. UVS, ultraviolet sensitive; VS, violet sensitive. Note: colour volume values are multiplied by 1000.

Extended Data Fig. 4 Geographic distribution of the proportion of species in passerine assemblages in the top colour diversity quartile using different datasets.

Grid cell size is 50 × 50 km for all panels (Behrman projection) and only cells containing at least 5 sampled species are plotted. UVS, ultraviolet sensitive; VS, violet sensitive.

Supplementary information

Supplementary Information

Supplementary Tables 1–7.

Reporting Summary

Supplementary Data 1

Supplementary dataset.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cooney, C.R., He, Y., Varley, Z.K. et al. Latitudinal gradients in avian colourfulness. Nat Ecol Evol 6, 622–629 (2022). https://doi.org/10.1038/s41559-022-01714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01714-1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing