Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular mechanisms of mutualistic and antagonistic interactions in a plant–pollinator association



Many insects metamorphose from antagonistic larvae into mutualistic adult pollinators, with reciprocal adaptation leading to specialized insect–plant associations. It remains unknown how such interactions are established at molecular level. Here we assemble high-quality genomes of a fig species, Ficus pumila var. pumila, and its specific pollinating wasp, Wiebesia pumilae. We combine multi-omics with validation experiments to reveal molecular mechanisms underlying this specialized interaction. In the plant, we identify the specific compound attracting pollinators and validate the function of several key genes regulating its biosynthesis. In the pollinator, we find a highly reduced number of odorant-binding protein genes and an odorant-binding protein mainly binding the attractant. During antagonistic interaction, we find similar chemical profiles and turnovers throughout the development of galled ovules and seeds, and a significant contraction of detoxification-related gene families in the pollinator. Our study identifies some key genes bridging coevolved mutualists, establishing expectations for more diffuse insect–pollinator systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Fig–pollinator mutualism between F. pumila var. pumila and Wiebesia pumilae, and determination of the compound attracting W. pumilae.
Fig. 2: Molecular mechanisms of the specific host identification of W. pumilae.
Fig. 3: Regulation of gene expression in attractant biosynthesis in figs of F. pumila var. pumila.
Fig. 4: Metabolic and genomic signature of antagonistic interaction between F. pumila var. pumila and W. pumilae.

Data availability

The data that support the findings of this study have been deposited in the CNSA ( of CNGBdb with accession code CNP0000674.

Code availability

All analyses in this study were conducted using published programs, and all codes for data analysis are provided in the Methods.


  1. 1.

    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

    CAS  PubMed  Google Scholar 

  2. 2.

    Simões, M. et al. The evolving theory of evolutionary radiations. Trends Ecol. Evol. 31, 27–34 (2016).

    PubMed  Google Scholar 

  3. 3.

    Arnegard, M. E. et al. Genetics of ecological divergence during speciation. Nature 511, 307–311 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS  PubMed  Google Scholar 

  5. 5.

    Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335 (2016).

    CAS  PubMed  Google Scholar 

  6. 6.

    Becerra, J. X., Nogeb, K. & Venable, D. L. Macroevolutionary chemical escalation in an ancient plant–herbivore arms race. Proc. Natl Acad. Sci. USA 106, 18062–18066 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Adler, L. S. & Bronstein, J. L. Attracting antagonists: does floral nectar increase leaf herbivory? Ecology 85, 1519–1526 (2004).

    Google Scholar 

  9. 9.

    McCall, A. C. & Irwin, R. E. Florivory: the intersection of pollination and herbivory. Ecol. Lett. 9, 1351–1365 (2006).

    PubMed  Google Scholar 

  10. 10.

    Cook, J. M. & Rasplus, J.-Y. Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol. Evol. 18, 241–248 (2003).

    Google Scholar 

  11. 11.

    Zhang, X. et al. Genomes of the banyan tree and pollinator wasp provide insights into fig–wasp coevolution. Cell 183, 875–889 (2020).

    CAS  PubMed  Google Scholar 

  12. 12.

    Herre, E. A., Jandér, K. C. & Machado, C. A. Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Annu. Rev. Ecol. Evol. Syst. 39, 439–458 (2008).

    Google Scholar 

  13. 13.

    Souza, C. D. et al. Diversity of fig glands is associated with nursery mutualism in fig trees. Am. J. Bot. 102, 1564–1577 (2015).

    CAS  PubMed  Google Scholar 

  14. 14.

    Souto-Vilarós, D. et al. Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig–wasp mutualism. J. Ecol. Evol. 106, 2256–2273 (2018).

    Google Scholar 

  15. 15.

    Wang, R. et al. Loss of top-down biotic interactions changes the relative benefits for obligate mutualists. Proc. R. Soc. B 286, 20182501 (2019).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Mori, K. et al. Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.). Sci. Rep. 7, 41124 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Proffit, M. et al. Chemical signal is in the blend: bases of plant–pollinator encounter in a highly specialized interaction. Sci. Rep. 10, 10071 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Chen, C. et al. Private channel: a single unusual compound assures specific pollinator attraction in Ficus semicordata. Funct. Ecol. 23, 941–950 (2009).

    Google Scholar 

  19. 19.

    Wang, G., Cannon, C. H. & Chen, J. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc. R. Soc. B 283, 20152963 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Yu, H. et al. De novo transcriptome sequencing in Ficus hirta Vahl. (Moraceae) to investigate gene regulation involved in the biosynthesis of pollinator attracting volatiles. Tree Genet. Genomes 11, 91 (2015).

    Google Scholar 

  21. 21.

    Soler, C. C. L., Proffit, M., Bessière, J.-M., Hossaert -McKey, M. & Schatz, B. Evidence for intersexual chemical mimicry in a dioicous plant. Ecol. Lett. 15, 978–985 (2012).

    PubMed  Google Scholar 

  22. 22.

    Volf, M. et al. Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol. Lett. 21, 83–92 (2018).

    PubMed  Google Scholar 

  23. 23.

    Martinson, E. O., Hackett, J. D., Machado, C. A. & Arnold, A. E. Metatranscriptome analysis of fig flowers provides insights into potential mechanisms for mutualism stability and gall induction. PLoS ONE 10, e0130745 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Zhang, H. et al. Leaf-mining by Phyllonorycter blancardella reprograms the host–leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense. J. Insect Physiol. 84, 114–127 (2016).

    CAS  PubMed  Google Scholar 

  25. 25.

    Schultz, J. C., Edger, P. P., Body, M. & Appel, H. M. A galling insect activates plant reproductive programs during gall development. Sci. Rep. 9, 1833 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    The Nasonia Genome Working Group Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327, 343–348 (2010).

    PubMed Central  Google Scholar 

  27. 27.

    Xiao, J.-H. et al. Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biol. 14, R141 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ohri, D. & Khoshoo, T. N. Nuclear DNA contents in the genus Ficus (Moraceae). Plant Syst. Evol. 156, 1–4 (1987).

    Google Scholar 

  29. 29.

    Chen, Y., Compton, S. G., Liu, M. & Chen, X.-Y. Fig trees at the northern limit of their range: the distributions of cryptic pollinators indicate multiple glacial refugia. Mol. Ecol. 21, 1687–1701 (2012).

    PubMed  Google Scholar 

  30. 30.

    Chen, L.-G. et al. Binding affinity characterization of an antennae-enriched chemosensory protein from the white-backed planthopper, Sogatella furcifera (Horváth), with host plant volatiles. Pestic. Biochem. Phys. 152, 1–7 (2018).

    Google Scholar 

  31. 31.

    Gu, S.-H. et al. Functional characterization and immunolocalization of odorant binding protein 1 in the lucerne plant bug, Adelphocoris lineolatus (GOEZE). Arch. Insect Biochem. Physiol. 77, 81–99 (2011).

    CAS  PubMed  Google Scholar 

  32. 32.

    Leal, W. S. et al. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS ONE 3, e3045 (2008).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Rizzo, W. B. et al. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function. Biochim. Biophys. Acta 1841, 377–389 (2014).

    CAS  PubMed  Google Scholar 

  34. 34.

    Schwab, W., Davidovich‐Rikanati, R. & Lewinsohn, E. Biosynthesis of plant‐derived flavor compounds. Plant J. 54, 712–732 (2008).

    CAS  PubMed  Google Scholar 

  35. 35.

    Capella, M., Ribone, P. A., Arce, A. L. & Chan, R. L. Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation. New Phytol. 207, 669–682 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Jiang, W. et al. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. J. Exp. Bot. 69, 2555–2567 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Guan, R. et al. Draft genome of the living fossil Ginkgo biloba. GigaScience 5, 49 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Mithöfer, A. & Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).

    PubMed  Google Scholar 

  39. 39.

    Salazar, D. et al. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat. Ecol. Evol. 2, 983–990 (2018).

    PubMed  Google Scholar 

  40. 40.

    Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).

    PubMed  Google Scholar 

  41. 41.

    Segar, S. T., Volf, M., Sisol, M., Pardikes, N. & Souto-Vilarós, A. D. Chemical cues and genetic divergence in insects on plants: conceptual cross pollination between mutualistic and antagonistic systems. Curr. Opin. Insect Sci. 32, 83–90 (2019).

    PubMed  Google Scholar 

  42. 42.

    Cook, J. M. & Segar, S. T. Speciation in fig wasps. Ecol. Entomol. 35, 54–66 (2010).

    Google Scholar 

  43. 43.

    Cruaud, A. et al. An extreme case of plant–insect codiversification: figs and fig-pollinating wasps. Syst. Biol. 61, 1029–1047 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yu, H. et al. Multiple parapatric pollinators have radiated across a continental fig tree displaying clinal genetic variation. Mol. Ecol. 28, 2391–2405 (2019).

    PubMed  Google Scholar 

  45. 45.

    Satler, J. D. et al. Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps. Evolution 73, 2295–2311 (2019).

    PubMed  Google Scholar 

  46. 46.

    Wang, G. et al. Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig–wasp pollination mutualism. Nat. Commun. 12, 718 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Hoballah, M. E. et al. Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell 19, 779–790 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    PubMed  Google Scholar 

  49. 49.

    Kiers, E. T., Palmer, T. M., Ives, A. R., Bruno, J. F. & Bronstein, J. L. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13, 1459–1474 (2010).

    Google Scholar 

  50. 50.

    Segar, S. T. et al. The role of evolution in shaping ecological networks. Trends Ecol. Evol. 35, 454–466 (2020).

    PubMed  Google Scholar 

  51. 51.

    Stoy, K. S., Gibson, A. K., Gerardo, N. M. & Morran, L. T. A need to consider the evolutionary genetics of host–symbiont mutualisms. J. Evol. Biol. 33, 1656–1668 (2020).

    PubMed  Google Scholar 

  52. 52.

    Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Xiao, C.-L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).

    CAS  PubMed  Google Scholar 

  54. 54.

    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Pryszcz, L. P. & Gabaldón, T. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, e113 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).

    CAS  PubMed  Google Scholar 

  57. 57.

    English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Sahlin, K., Chikhi & Arvestad, R. L. Assembly scaffolding with PE-contaminated mate-pair libraries. Bioinformatics 32, 1925–1932 (2016).

    PubMed  Google Scholar 

  59. 59.

    Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).

    CAS  PubMed  Google Scholar 

  60. 60.

    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler Transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Google Scholar 

  65. 65.

    Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Edgar, R. C. & Myers, E. W. PILER: identification and classification of genomic repeats. Bioinformatics 21, i152–i158 (2005).

    CAS  PubMed  Google Scholar 

  70. 70.

    Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).

    CAS  PubMed  Google Scholar 

  71. 71.

    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Nawrocki, E. P. et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43, D130–D137 (2015).

    CAS  PubMed  Google Scholar 

  74. 74.

    Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinf. 12, 491 (2011).

    Google Scholar 

  75. 75.

    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Johnson, A. D. et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24, 2938–2939 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Buels, R. et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 17, 66 (2016).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS  PubMed  Google Scholar 

  81. 81.

    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    CAS  PubMed  Google Scholar 

  83. 83.

    Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    CAS  PubMed  Google Scholar 

  85. 85.

    Li, L., Stoeckert, C. J. Jr & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Li, H. et al. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–D580 (2006).

    CAS  PubMed  Google Scholar 

  87. 87.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Guindon, S., Delsuc, F., Dufayard, J. F. & Gascuel, O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol. Biol. 537, 113–137 (2009).

    CAS  PubMed  Google Scholar 

  90. 90.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  PubMed  Google Scholar 

  91. 91.

    De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    PubMed  Google Scholar 

  92. 92.

    Tang, H. et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 18, 1944–1954 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Schwartz, S. et al. Human–mouse alignments with BLASTZ. Genome Res. 13, 103–107 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J. & Eichler, E. E. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 11, 1005–1017 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Ruan, J., Li, H., Chen, Z. & Coghlan, A. TreeFam: 2008 update. Nucleic Acids Res. 36, D735–D740 (2008).

    CAS  PubMed  Google Scholar 

  97. 97.

    Tholl, D. et al. Practical approaches to plant volatile analysis. Plant J. 45, 540–560 (2006).

    CAS  PubMed  Google Scholar 

  98. 98.

    Wen, B., Mei, Z., Zeng, C. & Liu, S. metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinform. 18, 183 (2017).

    Google Scholar 

  99. 99.

    Wen, P. et al. The sex pheromone of a globally invasive honey bee predator, the Asian eusocial hornet, Vespa velutina. Sci. Rep. 7, 12956 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).

    CAS  Google Scholar 

  103. 103.

    Tian, X., Chen, L., Wang, J., Qiao, J. & Zhang, W. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J. Proteom. 78, 326–345 (2013).

    CAS  Google Scholar 

  104. 104.

    Wen, B. et al. IQuant: an automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics 14, 2280–2285 (2014).

    CAS  PubMed  Google Scholar 

  105. 105.

    Brosch, M., Yu, L., Hubbard, T. & Choudhary, J. Accurate and sensitive peptide identification with Mascot Percolator. J. Proteome Res. 8, 3176–3181 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Savitski, M. M., Wilhelm, M., Hahne, H., Kuster, B. & Bantscheff, M. A scalable approach for protein false discovery rate estimation in large proteomic data sets. Mol. Cell Proteomics 14, 2394–2404 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  PubMed  Google Scholar 

  108. 108.

    Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell Proteomics 14, 1400–1410 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).

    CAS  PubMed  Google Scholar 

  110. 110.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Choi, M. et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014).

    CAS  Google Scholar 

  112. 112.

    Wen, X.-L., Wen, P., Dahlsjö, C. A. L., Sillam-Dussès, D. & Šobotník, J. Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey. Proc. R. Soc. B 284, 20170121 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  114. 114.

    Lescot, M. et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325–327 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).

    Google Scholar 

  116. 116.

    Yip, A. M. & Horvath, S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. 8, 22 (2007).

    Google Scholar 

  117. 117.

    Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008).

    CAS  PubMed  Google Scholar 

  118. 118.

    Gendrel, A. V., Lippman, Z., Martienssen, R. & Colot, V. Profiling histone modification patterns in plants using genomic tiling microarrays. Nat. Methods 2, 213–218 (2005).

    CAS  PubMed  Google Scholar 

Download references


We thank Y.-J. Wang, Q.-C. Zhu, Q. Sun, Q.-Y. Li, J.-W. Wang, T.-L. Xu, Y. Chen, F.-L. Wei, G.-C. Shen, X.-L. Wen and L.-S. Li for their kind help in field experiments; X.-L. Wen, L.-S. Li and the Public Technology Service Center of XTBG (CAS) for assisting active VOCs analysis; and X.-G. Mao, P.-Y. Hua and D.-Y. Zhang for constructive suggestions in data analysis. This work is supported by NSFC grants 31630008 and 31870356 (X.-Y.C.) and 31870359 (G.W.), and a Talents 1000 Fellowship of Shaanxi Province (D.W.D.). S.T.S. acknowledges departmental support from Harper Adams University.

Author information




X.-Y.C. and R.W. conceived and designed the study. R.W., Y. Yang, S.G.C., S.T.S., H.Y. and Z.Y. conducted the experiments and analysed data. Y.J., Q.-F.L., H.Y., Y.-Y.Z., G.W., J.C., R.M., S.C., Y.C., D.W.D., H.-Q.L., M.L., Y.-Y.D., Y.-Y.L., X.T., P.W., J.-J.Y., X.-T.Z., Q.G., Y. Yin, K.J. and H.-M.Y. contributed to data acquisition and data analyses. R.W., S.T.S., S.G.C., J.-Q.L., J.-Y.R., F.K., C.A.M, A.C., P.M.G., Y.-Y.Z. and X.-Y.C. edited the manuscript. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Hui Yu, Zhen Yue, Stephen G. Compton or Xiao-Yong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Shuqing Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Tables 1–17 and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Yang, Y., Jing, Y. et al. Molecular mechanisms of mutualistic and antagonistic interactions in a plant–pollinator association. Nat Ecol Evol 5, 974–986 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing