Abstract
Global change alters ecological communities and may disrupt ecological interactions and the provision of ecosystem functions. As ecological communities respond to global change, species may either go locally extinct or form novel interactions. To date, few studies have assessed how flexible species are in their interaction patterns, mainly due to the scarcity of data spanning long time series. Using a ten-year species-level dataset on the assembly of mutualistic networks from the Central Valley in California, we test whether interaction flexibility affects pollinators’ colonization and persistence and their resulting habitat occupancy in a highly modified landscape. We propose three metrics of interaction flexibility associated with different scales of organization within ecological communities and explore which species’ traits affect them. Our results provide empirical evidence linking species’ ability to colonize habitat patches across a landscape to the role they play in networks. Phenological breadth and body size had contrasting effects on interaction flexibility. We demonstrate the relationship between mutualistic networks and species’ ability to colonize and persist in the landscape, suggesting interaction flexibility as a potential mechanism for communities to maintain ecosystem function despite changes in community composition.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
Data describing plant–pollinator interactions as well as data generated in this study are available in Github (https://github.com/Magaiarsa/intFlex) and Zenodo (https://zenodo.org/record/4485996#.YE9dzGRKhhF).
Code availability
Code is deposited in Github (https://github.com/Magaiarsa/intFlex) and Zenodo (https://zenodo.org/record/4485996#.YE9dzGRKhhF).
References
Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271, 2605–2611 (2004).
Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).
Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant–pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).
Spiesman, B. J. & Gratton, C. Flexible foraging shapes the topology of plant–pollinator interaction networks. Ecology 97, 1431–1441 (2016).
CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).
Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).
Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl Acad. Sci. USA 111, 14472–14477 (2014).
Burkle, L. A. & Alarcón, R. The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528–538 (2011).
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Syst. 48, 24–48 (2017).
Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, 2013).
MacLeod, M., Genung, M. A., Ascher, J. S. & Winfree, R. Measuring partner choice in plant–pollinator networks: using null models to separate rewiring and fidelity from chance. Ecology 97, 2925–2931 (2016).
Fortuna, M. A., Nagavci, A., Barbour, M. A. & Bascompte, J. Partner fidelity and asymmetric specialization in ecological networks. Am. Nat. 196, 382–389 (2020).
Bascompte, J. & Stouffer, D. B. The assembly and disassembly of ecological networks. Philos. Trans. R. Soc. B 364, 1781 (2009).
Cirtwill, A. R., Roslin, T., Rasmussen, C., Olesen, J. M. & Stouffer, D. B. Between-year changes in community composition shape species’ roles in an Arctic plant–pollinator network. Oikos 127, 1163–1176 (2018).
Mora, B. B., Shin, E., CaraDonna, P. J. & Stouffer, D. B. Untangling the seasonal dynamics of plant–pollinator communities. Nat. Commun. 11, 4086 (2020).
Saavedra, S., Stouffer, D. B., Uzzi, B. & Bascompte, J. Strong contributors to network persistence are the most vulnerable to extinction. Nature 478, 233–235 (2011).
Sebastián-González, E. Drivers of species role in avian seed-dispersal mutualistic networks. J. Anim. Ecol. 86, 878–887 (2017).
Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).
CaraDonna, P. J. et al. Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecol. Lett. 24, 149–161 (2020).
Vázquez, D. P., Chacoff, N. P. & Cagnolo, L. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90, 2039–2046 (2009).
Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).
Olesen, J. M., Bascompte, J., Dupont, Y. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).
Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).
Valdovinos, F. S. et al. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol. Lett. 19, 1277–1286 (2016).
Rafferty, N. E., CaraDonna, P. J. & Bronstein, J. L. Phenological shifts and the fate of mutualisms. Oikos 124, 14–21 (2015).
Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Species abundance, not diet breadth, drives the persistence of the most linked pollinators as plant–pollinator networks disassemble. Am. Nat. 183, 600–611 (2014).
Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).
Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154 (2019).
Fontaine, C., Collin, C. L. & Dajoz, I. Generalist foraging of pollinators: diet expansion at high density. J. Ecol. 96, 1002–1010 (2008).
Stouffer, D. B., Sales-Pardo, M., Sirer, M. I. & Bascompte, J. Evolutionary conservation of species’ roles in food webs. Science 335, 1489–1492 (2012).
Simmons, B. I. et al. Motifs in bipartite ecological networks: uncovering indirect interactions. Oikos 128, 154–170 (2019).
Ponisio, L. C. Pyrodiversity promotes interaction complementarity and population resistance. Ecol. Evol. 10, 4431–4447 (2020).
Grab, H., Blitzer, E. J., Danforth, B., Loeb, G. & Poveda, K. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops. Sci. Rep. 7, 45296 (2017).
MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).
Mitchell, W. A. An optimal control theory of diet selection: the effects of resource depletion and exploitative competition. Oikos 58, 16–24 (1990).
Robinson, B. W. & Wilson, D. S. Optimal foraging, specialization, and a solution to Liem’s paradox. Am. Nat. 151, 223–235 (1998).
Valdovinos, F. S., Moisset de Espanés, P., Flores, J. D. & Ramos-Jiliberto, R. Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos 122, 907–917 (2013).
Ponisio, L. C. et al. A network perspective for community assembly. Front. Ecol. Environ. 7, 103 (2019).
Benadi, G. & Gegear, R. J. Adaptive foraging of pollinators can promote pollination of a rare plant species. Am. Nat. 192, E81–E92 (2018).
Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl Acad. Sci. USA 113, E4035–E4042 (2016).
Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).
Fort, H., Vázquez, D. P. & Lan, B. L. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19, 4–11 (2016).
Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).
Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).
Bascompte, J. & Ferrera, A. in Theoretical Ecology: Concepts and Applications (eds McCann, A. S. & Gellner, G.) 93–115 (Oxford Univ. Press, 2020).
Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).
Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).
Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).
Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).
Kremen, C. & M’Gonigle, L. K. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J. Appl. Ecol. 52, 602–610 (2015).
Kremen, C., Williams, N. & Thorp, R. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).
Morandin, L., Long, R. & Kremen, C. Pest control and pollination cost–benefit analysis of hedgerow restoration in a simplified agricultural landscape. J. Econ. Entomol. 109, 1020–1027 (2016).
Brittain, C., Williams, N., Kremen, C. & Klein, A. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B 280, 1471–2954 (2013).
Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).
Oksanen, J. et al. vegan: Community Ecology Package (2019); https://CRAN.R-project.org/package=vegan
Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).
Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
Mora, B. B., Cirtwill, A. R. & Stouffer, D. B. pymfinder: a tool for the motif analysis of binary and quantitative complex networks (2018); https://doi.org/10.1101/364703
Simmons, B. I. et al. bmotif: a package for motif analyses of bipartite networks. Methods Ecol. Evol. 10, 695–701 (2019).
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Baker, N. J., Kaartinen, R., Roslin, T. & Stouffer, D. B. Species’ roles in food webs show fidelity across a highly variable oak forest. Ecography 38, 130–139 (2015).
Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).
Dormann, C., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8 (2008).
Dorazio, R. M., Kery, M., Royle, J. A. & Plattner, M. Models for inference in dynamic metacommunity systems. Ecology 91, 2466–2475 (2010).
Ponisio, L. C., de Valpine, P., M’Gonigle, L. K. & Kremen, C. Proximity of restored hedgerows interacts with local floral diversity and species’ traits to shape long-term pollinator metacommunity dynamics. Ecol. Lett. 22, 1048–1060 (2019).
Royle, J. A. & Kéry, M. A Bayesian state–space formulation of dynamic occupancy models. Ecology 88, 1813–1823 (2007).
Ponisio, L. C., de Valpine, P., Michaud, N. & Turek, D. One size does not fit all: customizing MCMC methods for hierarchical models using NIMBLE. Ecol. Evol. 10, 2385–2416 (2020).
de Valpine, P. et al. Programming with models: writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 26, 403–413 (2017).
Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference (Cambridge Univ. Press, 2004).
Kremen, C., M’Gonigle, L. K. & Ponisio, L. C. Pollinator community assembly tracks changes in floral resources as restored hedgerows mature in agricultural landscapes. Front. Ecol. Evol. 6, 170 (2018).
Ponisio, L. C., M’gonigle, L. K. & Kremen, C. On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob. Change Biol. 22, 704–715 (2016).
Lefcheck, J. S. PiecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/
Acknowledgements
We thank M. C. Hutchinson, A. P. A. Assis, G. Burin, J. Diez, J. Gillung, P. R. Guimarães Jr and B. B. Mora for their thoughtful discussions and comments on the manuscript, J. Lefcheck for his assistance with the structural equation models and A. R. Cirtwill for discussions regarding motif analysis. We also thank the growers and landowners that allowed us to work on their property and greatly appreciate the identification assistance of expert taxonomists J. Gibbs, M. Hauser, J. Pawelek and the late R. Thorp. This work was supported by funding from the Army Research Office (W911NF-11-1-0361 to C.K.), the Natural Resources Conservation Service (CIG-69-3A75-12-253, CIG-69-3A75-9-142, CIG-68-9104-6-101 and WLF-69-7482-6-277 to the Xerces Society), the National Science Foundation (DEB-0919128 to C.K.), The US Department of Agriculture (USDA-NIFA 2012-51181-20105 to Michigan State University) and a USDA NIFA fellowship to L.C.P. M.P.G. acknowledges funding provided by the University of California Chancellor’s Postdoctoral Fellowship from UC Riverside.
Author information
Authors and Affiliations
Contributions
M.P.G. and L.C.P. designed the analysis. C.K. designed the field study. L.C.P. and C.K. collected data. M.P.G. and L.C.P. developed the metrics for interaction flexibility, which M.P.G. implemented. L.C.P. wrote the first version of the occupancy models, which M.P.G. modified and refined for this study. M.P.G. wrote the manuscript, performed analyses and prepared the figures. All authors contributed to revisions.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Ecology & Evolution thanks Gita Benadi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–4, Discussion and Tables 1–6.
Rights and permissions
About this article
Cite this article
Gaiarsa, M.P., Kremen, C. & Ponisio, L.C. Pollinator interaction flexibility across scales affects patch colonization and occupancy. Nat Ecol Evol 5, 787–793 (2021). https://doi.org/10.1038/s41559-021-01434-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-021-01434-y