Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Consistent trait–environment relationships within and across tundra plant communities

Subjects

Abstract

A fundamental assumption in trait-based ecology is that relationships between traits and environmental conditions are globally consistent. We use field-quantified microclimate and soil data to explore if trait–environment relationships are generalizable across plant communities and spatial scales. We collected data from 6,720 plots and 217 species across four distinct tundra regions from both hemispheres. We combined these data with over 76,000 database trait records to relate local plant community trait composition to broad gradients of key environmental drivers: soil moisture, soil temperature, soil pH and potential solar radiation. Results revealed strong, consistent trait–environment relationships across Arctic and Antarctic regions. This indicates that the detected relationships are transferable between tundra plant communities also when fine-scale environmental heterogeneity is accounted for, and that variation in local conditions heavily influences both structural and leaf economic traits. Our results strengthen the biological and mechanistic basis for climate change impact predictions of vulnerable high-latitude ecosystems.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Data and study design.
Fig. 2: Environmentally explained variation in plant functional trait composition.
Fig. 3: Plant functional trait–environment relationships.

Data availability

The data are deposited in the Zenodo public repository115 at https://doi.org/10.5281/zenodo.4362216.

Code availability

The code is deposited in the Zenodo public repository115 at https://doi.org/10.5281/zenodo.4362216.

References

  1. Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).

    PubMed  Google Scholar 

  2. McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed  Google Scholar 

  3. Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    PubMed  Google Scholar 

  4. Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    CAS  PubMed  Google Scholar 

  5. Billings, W. D. Arctic and Alpine vegetations: similarities, differences, and susceptibility to disturbance. BioScience 23, 697–704 (1973).

    Google Scholar 

  6. Graae, B. J. et al. Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).

    Google Scholar 

  7. Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    PubMed  Google Scholar 

  8. Choler, P. Consistent shifts in alpine plant traits along a mesotopographical gradient. Arct. Antarct. Alp. Res. 37, 444–453 (2005).

    Google Scholar 

  9. Wullschleger, S. D. et al. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Ann. Bot. 114, 1–16 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).

    Google Scholar 

  11. Myers-Smith, I. H., Thomas, H. J. D. & Bjorkman, A. D. Plant traits inform predictions of tundra responses to global change. New Phytol. 221, 1742–1748 (2019).

    PubMed  Google Scholar 

  12. Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).

    CAS  Google Scholar 

  13. Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    CAS  PubMed  Google Scholar 

  14. Saros, J. E. et al. Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. Environ. Res. Lett. 14, 074027 (2019).

    Google Scholar 

  15. Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Google Scholar 

  16. Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    CAS  PubMed  Google Scholar 

  17. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    PubMed  Google Scholar 

  18. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    CAS  PubMed  Google Scholar 

  19. Thomas, H. J. D. et al. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat. Commun. 11, 1351 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Billings, W. D. & Bliss, L. C. An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40, 388–397 (1959).

    Google Scholar 

  21. Myers-Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. Chapin, F. S. III et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).

    CAS  PubMed  Google Scholar 

  23. Cahoon, S. M. P. et al. Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecol. Lett. 15, 1415–1422 (2012).

    PubMed  Google Scholar 

  24. Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Google Scholar 

  25. Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).

    Google Scholar 

  26. Cornelissen, J. H. C. et al. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol. Lett. 10, 619–627 (2007).

    PubMed  Google Scholar 

  27. Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    CAS  PubMed  Google Scholar 

  28. Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).

    Google Scholar 

  29. Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  31. Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).

    Google Scholar 

  32. Bromwich, D. H. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 6, 139–145 (2013).

    CAS  Google Scholar 

  33. Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).

    CAS  PubMed  Google Scholar 

  34. Sonesson, M., Wielgolaski, F. E. & Kallio, P. in Fennoscandian Tundra Ecosystems. Ecological Studies (Analysis and Synthesis) Vol. 16 (ed. Wielgolaski, F. E.) 3–28 (Springer, 1975); https://doi.org/10.1007/978-3-642-80937-8_1

  35. Niittynen, P., Heikkinen, R. K. & Luoto, M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).

    Google Scholar 

  36. Klikoff, L. G. Photosynthetic response to temperature and moisture stress of three timberline meadow species. Ecology 46, 516–517 (1965).

    Google Scholar 

  37. Oberbauer, S. F. & Billings, W. D. Drought tolerance and water use by plants along an alpine topographic gradient. Oecologia 50, 325–331 (1981).

    PubMed  Google Scholar 

  38. Eskelinen, A., Stark, S. & Männistö, M. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161, 113–123 (2009).

    PubMed  Google Scholar 

  39. Ernakovich, J. G. et al. Predicted responses of Arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).

    Google Scholar 

  40. Galen, C. & Stanton, M. L. Responses of snowbed plant species to changes in growing-season length. Ecology 76, 1546–1557 (1995).

    Google Scholar 

  41. Starr, G., Oberbauer, S. F. & Ahlquist, L. E. The photosynthetic response of Alaskan tundra plants to increased season length and soil warming. Arct. Antarct. Alp. Res. 40, 181–191 (2008).

    Google Scholar 

  42. Happonen, K. et al. Snow is an important control of plant community functional composition in oroarctic tundra. Oecologia 191, 601–608 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Niittynen, P. & Luoto, M. The importance of snow in species distribution models of Arctic vegetation. Ecography 41, 1024–1037 (2018).

    Google Scholar 

  44. le Roux, P. C., Aalto, J. & Luoto, M. Soil moisture’s underestimated role in climate change impact modelling in low-energy systems. Glob. Change Biol. 19, 2965–2975 (2013).

    Google Scholar 

  45. Lembrechts, J. J. et al. SoilTemp: a global database of near-surface temperature. Glob. Change Biol. 26, 6616–6629 (2020).

  46. Bjorkman, A. D. et al. Tundra Trait Team: a database of plant traits spanning the tundra biome. Glob. Ecol. Biogeogr. 27, 1402–1411 (2018).

    Google Scholar 

  47. Maitner, B. S. et al. The bien r package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).

    Google Scholar 

  48. Kattge, J. et al. TRY - a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Google Scholar 

  49. Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Change 10, 1143–1148 (2020).

  51. Belluau, M. & Shipley, B. Predicting habitat affinities of herbaceous dicots to soil wetness based on physiological traits of drought tolerance. Ann. Bot. 119, 1073–1084 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Kemppinen, J., Niittynen, P., Riihimäki, H. & Luoto, M. Modelling soil moisture in a high-latitude landscape using LiDAR and soil data. Earth Surf. Proc. Land. 43, 1019–1031 (2018).

    Google Scholar 

  53. Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C. & Luoto, M. Water as a resource, stress and disturbance shaping tundra vegetation. Oikos 128, 811–822 (2019).

    Google Scholar 

  54. Giblin, A. E., Nadelhoffer, K. J., Shaver, G. R., Laundre, J. A. & McKerrow, A. J. Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecol. Monogr. 61, 415–435 (1991).

    Google Scholar 

  55. le Roux, P. C., Virtanen, R. & Luoto, M. Geomorphological disturbance is necessary for predicting fine-scale species distributions. Ecography 36, 800–808 (2013).

    Google Scholar 

  56. Finger Higgens, R., Hicks Pries, C. & Virginia, R. A. Trade-offs between wood and leaf production in Arctic shrubs along a temperature and moisture gradient in West Greenland. Ecosystems https://doi.org/10.1007/s10021-020-00541-4 (2020).

  57. Porporato, A. & Rodriguez-Iturbe, I. Ecohydrology-a challenging multidisciplinary research perspective / Ecohydrologie: une perspective stimulante de recherche multidisciplinaire. Hydrol. Sci. J. 47, 811–821 (2002).

    Google Scholar 

  58. Legates, D. R. et al. Soil moisture: a central and unifying theme in physical geography. Prog. Phys. Geogr. 35, 65–86 (2011).

    Google Scholar 

  59. McLaughlin, B. C. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).

    Google Scholar 

  60. Choler, P. Winter soil temperature dependence of alpine plant distribution: implications for anticipating vegetation changes under a warming climate. Perspect. Plant Ecol. Evol. Syst. 30, 6–15 (2018).

    Google Scholar 

  61. Happonen, K. et al. Snow is an important control of plant community functional composition in oroarctic tundra. Oecologia 191, 601–608 (2019).

  62. Doran, P. T. et al. Antarctic climate cooling and terrestrial ecosystem response. Nature 415, 517–520 (2002).

    CAS  PubMed  Google Scholar 

  63. French, D. D. & Smith, V. R. A comparison between Northern and Southern Hemisphere tundras and related ecosystems. Polar Biol. 5, 5–21 (1985).

    Google Scholar 

  64. le Roux, P. C. in The Prince Edward Islands: Land–Sea Interactions in a Changing Ecosystem (eds Chown, S. L. & Froneman, P. W.) 39–64 (African Sun Media, 2008).

  65. Devau, N., Le Cadre, E., Jaillarda, B. & Gérarda, F. Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches. Appl. Geochem. 24, 2163–2174 (2009).

  66. Stevens, R. J., Laughlin, R. J. & Malone, J. P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol. Biochem. 30, 1119–1126 (1998).

    CAS  Google Scholar 

  67. Freschet, G. T., Cornelissen, J. H. C., Van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362–373 (2010).

    Google Scholar 

  68. Bergholz, K. et al. Fertilization affects the establishment ability of species differing in seed mass via direct nutrient addition and indirect competition effects. Oikos 124, 1547–1554 (2015).

    Google Scholar 

  69. Curtin, D., Campbell, C. A. & Jalil, A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol. Biochem. 30, 57–64 (1998).

    CAS  Google Scholar 

  70. Blondeel, H. et al. Light and warming drive forest understorey community development in different environments. Glob. Change Biol. 26, 1681–1696 (2020).

    Google Scholar 

  71. Dahlgren, J. P., Eriksson, O., Bolmgren, K., Strindell, M. & Ehrlén, J. Specific leaf area as a superior predictor of changes in field layer abundance during forest succession. J. Veg. Sci. 17, 577–582 (2006).

    Google Scholar 

  72. Lembrechts, J. J. et al. Comparing temperature data sources for use in species distribution models: from in‐situ logging to remote sensing. Glob. Ecol. Biogeogr. 28, 1578–1596 (2019).

    Google Scholar 

  73. Körner, C. & Hiltbrunner, E. The 90 ways to describe plant temperature. Perspect. Plant Ecol. Evol. Syst. 30, 16–21 (2018).

    Google Scholar 

  74. Maclean, I. M. D. Predicting future climate at high spatial and temporal resolution. Glob. Change Biol. 26, 1003–1011 (2019).

  75. Aalto, J., Scherrer, D., Lenoir, J., Guisan, A. & Luoto, M. Biogeophysical controls on soil–atmosphere thermal differences: implications on warming Arctic ecosystems. Environ. Res. Lett. 13, 074003 (2018).

    Google Scholar 

  76. Aalto, J., le Roux, P. C. & Luoto, M. Vegetation mediates soil temperature and moisture in Arctic-alpine environments. Arct. Antarct. Alp. Res. 45, 429–439 (2013).

    Google Scholar 

  77. Moles, A. T. et al. Which is a better predictor of plant traits: temperature or precipitation? J. Veg. Sci. 25, 1167–1180 (2014).

    Google Scholar 

  78. Taylor, R. V. & Seastedt, T. R. Short- and long-term patterns of soil moisture in alpine tundra. Arct. Alp. Res. 26, 14–20 (1994).

    Google Scholar 

  79. Lembrechts, J. J. & Lenoir, J. Microclimatic conditions anywhere at any time! Glob. Change Biol. https://doi.org/10.1111/gcb.14942 (2019).

  80. Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).

    PubMed  Google Scholar 

  81. Bramer, I. et al. Advances in monitoring and modelling climate at ecologically relevant scales. Adv. Ecol. Res. 58, 101–161 (2018).

  82. Halbritter, A. H. et al. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods Ecol. Evol. 2, 16147 (2019).

    Google Scholar 

  83. Wild, J. et al. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agr. Forest Meteorol. 268, 40–47 (2019).

    Google Scholar 

  84. Aalto, J., Riihimäki, H., Meineri, E., Hylander, K. & Luoto, M. Revealing topoclimatic heterogeneity using meteorological station data. Int. J. Climatol. 37, 544–556 (2017).

    Google Scholar 

  85. Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P. & Maclean, I. M. D. A method for computing hourly, historical, terrain‐corrected microclimate anywhere on Earth. Methods Ecol. Evol. https://doi.org/10.1111/2041-210x.13330 (2019).

  86. Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020).

    PubMed  Google Scholar 

  87. Vandvik, V., Halbritter, A. H. & Telford, R. J. Greening up the mountain. Proc. Natl Acad. Sci. USA 115, 833–835 (2018).

    CAS  PubMed  Google Scholar 

  88. Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).

    Google Scholar 

  89. Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).

    Google Scholar 

  90. Robinson, D. A. et al. Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Glob. Change Biol. 25, 1895–1904 (2019).

    Google Scholar 

  91. Loranty, M. M. et al. Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018).

    CAS  Google Scholar 

  92. Parker, T. C., Subke, J.-A. & Wookey, P. A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob. Change Biol. 21, 2070–2081 (2015).

    Google Scholar 

  93. DeMarco, J., Mack, M. C. & Bret-Harte, M. S. Effects of Arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95, 1861–1875 (2014).

    PubMed  Google Scholar 

  94. Qian, H., Joseph, R. & Zeng, N. Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Change Biol. 16, 641–656 (2010).

    Google Scholar 

  95. Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).

    CAS  PubMed  Google Scholar 

  96. Climate in Svalbard 2100 – A Knowledge Base for Climate Adaptation (Norwegian Centre for Climate Services, 2019); https://go.nature.com/3tFTKAr

  97. Weather Observations from Greenland 1958–2018 - Observation Data with Description DMI Report 19-08 (Danish Meteorological Institute, 2019); https://go.nature.com/36RkdBk

  98. Enontekiö Kilpisjärvi Saana. Daily Climate Observations (Finnish Meteorological Institute, 2019); https://en.ilmatieteenlaitos.fi/download-observations

  99. Enontekiö Kilpisjärvi Kyläkeskus. Daily Climate Observations (Finnish Meteorological Institute, 2019); https://en.ilmatieteenlaitos.fi/download-observations

  100. Smith, V. R. & Steenkamp, M. Classification of the terrestrial habitats on Marion Island based on vegetation and soil chemistry. J. Veg. Sci. 12, 181–198 (2001).

    Google Scholar 

  101. Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).

    CAS  PubMed  Google Scholar 

  103. Iversen, C. M. et al. The unseen iceberg: plant roots in Arctic tundra. New Phytol. 205, 34–58 (2015).

    PubMed  Google Scholar 

  104. Kern, R. et al. Comparative vegetation survey with focus on cryptogamic covers in the high Arctic along two differing catenas. Polar Biol. 42, 2131–2145 (2019).

    Google Scholar 

  105. Miller, R. O. & Kissel, D. E. Comparison of soil pH methods on soils of North America. Soil Sci. Soc. Am. J. 74, 310–316 (2010).

    Google Scholar 

  106. McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603 (2002).

    Google Scholar 

  107. McCune, B. Improved estimates of incident radiation and heat load using non- parametric regression against topographic variables. J. Veg. Sci. 18, 751 (2007).

    Google Scholar 

  108. Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team ASTER Global Digital Elevation Model (GDEM) V003 (NASA EOSDIS Land Processes DAAC, 2018); https://doi.org/10.5067/ASTER/ASTGTM.003

  110. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).

  112. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  113. Husson, F., Le, S. & Pagès, J. Exploratory Multivariate Analysis by Example Using R (CRC, 2017).

  114. Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 31844 (2008).

    Google Scholar 

  115. Kemppinen, J. et al. Data from: Consistent trait–environment relationships within and across tundra plant communities. Zenodo https://doi.org/10.5281/zenodo.4362216 (2020).

Download references

Acknowledgements

We thank the past and present members of the BioGeoClimate Modelling Lab and the le Roux Lab for their hard work collecting the field data. We also thank the laboratory personnel at the University of Helsinki and University of Pretoria, as well as the staff at The University Centre in Svalbard, Kangerlussuaq International Support Services, Kilpisjärvi Biological research station and Marion Island field assistants (specifically E. Mostert, N. Mhlongo, J. van Berkel and J. Schoombie). We are also grateful to P. Eidesen for helping with the temperature loggers and E. Pedersen for his help regarding HGAMs. We thank H. Riihimäki for providing the drone image composition, on which the study grid vector is based in Fig. 1. J.K. was funded by the Doctoral Programme in Geosciences at the University of Helsinki, P.N. by the Kone Foundation, M.M. by the National Research Foundation via the SANAP programme and K.H. by the Doctoral Programme in Wildlife Biology Research at the University of Helsinki. The field campaigns were funded by the Academy of Finland (project numbers 307761 and 286950) and the National Research Foundation’s South African National Antarctic Program (unique grant numbers 93077 and 110726). We acknowledge the funding by the Finnish Ministry of Education and Culture (The FinCEAL Plus BRIDGES coordinated by the Finnish University Partnership for International Development). Permission to carry out fieldwork was granted by the Governor of Svalbard for the high-Arctic site, the Government of Greenland for the low-Arctic site, Metsähallitus for the sub-Arctic site and the Prince Edward Islands Management Committee (permit PEIMC1/2013) for the sub-Antarctic site.

Author information

Authors and Affiliations

Authors

Contributions

J.K. conceived the research together with M.L. J.K., P.N., P.C.L.R., J.A. and M.L. designed the study setting. J.K., P.N., P.C.L.R., M.M., J.A. and M.L. performed the field research and H.R. laboratory analyses. J.K., with support from K.H. and B.J.E., analysed the data. J.K. wrote the first version of the paper with support, comments and input from all other authors. All authors revised the paper based on peer review comments.

Corresponding author

Correspondence to Julia Kemppinen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Sylvia Haider and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Figs. 1–3 and Data 1–2.

Reporting Summary

Supplementary Table

A comprehensive summary and basic statistics of the trait data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kemppinen, J., Niittynen, P., le Roux, P.C. et al. Consistent trait–environment relationships within and across tundra plant communities. Nat Ecol Evol 5, 458–467 (2021). https://doi.org/10.1038/s41559-021-01396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01396-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing