Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neanderthals and Homo sapiens had similar auditory and speech capacities

Abstract

The study of audition in fossil hominins is of great interest given its relationship with intraspecific vocal communication. While the auditory capacities have been studied in early hominins and in the Middle Pleistocene Sima de los Huesos hominins, less is known about the hearing abilities of the Neanderthals. Here, we provide a detailed approach to their auditory capacities. Relying on computerized tomography scans and a comprehensive model from the field of auditory bioengineering, we have established sound power transmission through the outer and middle ear and calculated the occupied bandwidth in Neanderthals. The occupied bandwidth is directly related to the efficiency of the vocal communication system of a species. Our results show that the occupied bandwidth of Neanderthals was greater than the Sima de los Huesos hominins and similar to extant humans, implying that Neanderthals evolved the auditory capacities to support a vocal communication system as efficient as modern human speech.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical reconstruction of the external and middle ear cavities in Neanderthals.
Fig. 2: SPT in modern humans, the SH hominins and Neanderthals.
Fig. 3: OBW in SH, Neanderthals and modern humans.

Similar content being viewed by others

Data availability

All the technical data regarding the CT scans as well as the measurements of 3D reconstructions necessary to reproduce our work are offered within the manuscript and Supplementary Information. CT scans of fossil material from Krapina are available at the Nespos platform. CT scans of the fossil specimens La Chapelle-aux-Saints 1 and La Quina H5 are the property of Musée de l’Homme (France); that for Amud 1 is the property of Tel Aviv University (Israel); and the fossil specimens from the Sima de los Huesos are property of Junta de Castilla y León (Spain), to whom application must be made for access. Interested readers may contact the authors, who will assist in getting in touch with the relevant institutions. The CT scans and 3D models of recent H. sapiens are available at Morphosource (https://www.morphosource.org/projects/000343670?locale=en).

References

  1. Tattersall, I. The material record and the antiquity of language. Neurosci. Biobehav. Rev. 81, 247–254 (2017).

    Article  PubMed  Google Scholar 

  2. Albessard-Ball, L. & Balzeau, A. Of tongues and men: a review of morphological evidence for the evolution of language. J. Lang. Evol. 3, 79–89 (2018).

    Article  Google Scholar 

  3. Dediu, D. & Levinson, S. C. Neanderthal language revisited: not only us. Curr. Opin. Behav. Sci. 21, 49–55 (2018).

    Article  Google Scholar 

  4. Bolhuis, J. J., Tattersall, I., Chomsky, N. & Berwick, R. C. How could language have evolved? PLoS Biol. 12, e1001934 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Arsuaga, J. L. et al. Neandertal roots: cranial and chronological evidence from Sima de los Huesos. Science 344, 1358–1363 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Arsuaga, J. L. et al. Postcranial morphology of the Middle Pleistocene humans from Sima de los Huesos, Spain. Proc. Natl Acad. Sci. USA 112, 11524–11529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balzeau, A., Holloway, R. L. & Grimaud-Hervé, D. Variations and asymmetries in regional brain surface in the genus Homo. J. Hum. Evol. 62, 696–706 (2012).

    Article  PubMed  Google Scholar 

  8. Pearce, E., Stringer, C. & Dunbar, R. I. New insights into differences in brain organization between Neandertals and anatomically modern humans. Proc. R. Soc. B 280, 20130168 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Neubauer, S., Hublin, J. J. & Gunz, P. The evolution of modern human brain shape. Sci. Adv. 4, eaao5961 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bruner, E., Manzi, G. & Arsuaga, J. L. Encephalization and allometric trajectories in the genus Homo: evidence from the Neandertal and modern lineages. Proc. Natl Acad. Sci. USA 100, 15335–15340 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zollikofer, C. P. E. & Ponce de León, M. S. Pandora’s growing box: inferring the evolution and development of hominin brains from endocasts. Evol. Anthropol. 22, 20–33 (2013).

    Article  PubMed  Google Scholar 

  12. Balzeau, A., Gilissen, E., Holloway, R. L., Prima, S. & Grimaud-Hervé, D. Variations in size, shape and asymmetries of the third frontal convolution in hominids: paleoneurological implications for hominin evolution and the origin of language. J. Hum. Evol. 76, 116–128 (2014).

    Article  PubMed  Google Scholar 

  13. Marie, D. et al. Left brain asymmetry of the planum temporale in a nonhominid primate: redefining the origin of brain specialization for language. Cereb. Cortex 28, 1808–1815 (2018).

    Article  PubMed  Google Scholar 

  14. Martínez, I. et al. Communicative capacities in Middle Pleistocene humans from the Sierra de Atapuerca in Spain. Quat. Int. 295, 94–101 (2013).

    Article  Google Scholar 

  15. Boë, L. J., Heim, J. L., Honda, K. & Maeda, S. The potential Neandertal vowel space was as large as that of modern humans. J. Phon. 30, 465–484 (2002).

    Article  Google Scholar 

  16. de Boer, B. Loss of air sacs improved hominin speech abilities. J. Hum. Evol. 62, 1–6 (2012).

    Article  PubMed  Google Scholar 

  17. Krause, J. et al. The derived FOXP2 variant of modern humans was shared with Neandertals. Curr. Biol. 17, 1908–1912 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Quam, R. M., Martínez, I. & Arsuaga, J. L. Reassessment of the La Ferrassie 3 Neandertal ossicular chain. J. Hum. Evol. 64, 250–262 (2013).

    Article  PubMed  Google Scholar 

  19. Stoessel, A. et al. Morphology and function of Neandertal and modern human ear ossicles. Proc. Natl Acad. Sci. USA 113, 11489–11494 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masali, M., Maffei, M. & Borgognini Tarli, S. M. in Circeo 1. The Neandertal Skull: Studies and Documentation (eds Piperno, M. & Scichilone, G.) 321–338 (Instituto Poligrafico e Zecca Dello Stato, 1991).

  21. Quam, R. et al. Early hominin auditory capacities. Sci. Adv. 1, e1500355 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martínez, I. et al. Auditory capacities in Middle Pleistocene humans from the Sierra de Atapuerca in Spain. Proc. Natl Acad. Sci. USA 101, 9976–9981 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rosowski, J. The effects of external and middle ear filtering on auditory threshold and noise-induced hearing loss. J. Acoust. Soc. Am. 90, 124–135 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. International Telecommunication Union. Recommendation ITU-R SM.443-4, Bandwidth Measurement at Monitoring Stations (SM Series Spectrum Management, 2007).

  25. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948) .

    Article  Google Scholar 

  26. Fano, R. M. The information theory point of view in speech communication. J. Acoust. Soc. Am. 22, 691–696 (1950).

    Article  Google Scholar 

  27. Letowski, T. R. & Scharine, A. A. Correlation Analysis of Speech Intelligibility and Metrics for Speech Transmission (US Army Research Laboratory, 2017).

  28. Skinner, M. W. & Miller, J. D. Amplification bandwidth and intelligibility of speech in quiet and noise for listeners with sensorineural hearing loss. Audiology 22, 253–279 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Kates, J. M. & Arehart, K. H. Coherence and the speech intelligibility index. J. Acoust. Soc. Am. 117, 2224–2237 (2005).

    Article  PubMed  Google Scholar 

  30. Methods for Calculation of the Speech Intelligibility Index ANSI/ASA S3.5-1997 (ANSI, reaffirmed 2020).

  31. Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Conde-Valverde, M. et al. A revision of the conductive hearing loss in Cranium 4 from the Middle Pleistocene site of Sima de los Huesos (Burgos, Spain). J. Hum. Evol. 135, 102663 (2019).

    Article  PubMed  Google Scholar 

  33. Fant, C. G. M. Speech Sounds and Features (MIT Press, 1973).

  34. Mitani, J. C., Hunley, K. L. & Murdoch, M. E. Geographic variation in the calls of wild chimpanzees: a reassessment. Am. J. Primatol. 47, 133–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Lieberman, P. On the Origins of Language: An Introduction to the Evolution of Human Speech (Macmillan, 1975).

  36. Maddieson, I. Patterns of Sounds (Cambridge Univ. Press, 1984).

  37. Lameira, A. R., Maddieson, I. & Zuberbühler, K. Primate feedstock for the evolution of consonants. Trends Cogn. Sci. 18, 60–62 (2014).

    Article  PubMed  Google Scholar 

  38. Caramazza, A., Chialant, D., Capasso, R. & Miceli, G. Separable processing of consonants and vowels. Nature 403, 428–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Owren, M. & Cardillo, G. The relative roles of vowels and consonants in discriminating talker identity versus word meaning. J. Acoust. Soc. Am. 119, 1727–1739 (2006).

    Article  PubMed  Google Scholar 

  40. Divenyi, P. L., Stark, P. B. & Haupt, K. M. Decline of speech understanding and auditory thresholds in the elderly. J. Acoust. Soc. Am. 118, 1089–1100 (2005).

    Article  PubMed  Google Scholar 

  41. Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Krueger, K. L. et al. Anterior dental microwear textures show habitat-driven variability in Neandertal behavior. J. Hum. Evol. 105, 13–23 (2017).

    Article  PubMed  Google Scholar 

  43. Zilhão, J. et al. Last Interglacial Iberian Neandertals as fisher-hunter-gatherers. Science 367, eaaz7943 (2020).

  44. Heyes, P. J. et al. Selection and use of manganese dioxide by Neanderthals. Sci. Rep. 6, 22159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vallverdú, J. et al. Combustion structures of archaeological level O and Mousterian activity areas with use of fire at the Abric Romaní rockshelter (NE Iberian Peninsula). Quat. Int. 247, 313–324 (2012).

    Article  Google Scholar 

  46. Tuniz, C. et al. Did Neanderthals play music? X‐ray computed micro‐tomography of the Divje babe ‘flute’. Archaeometry 54, 581–590 (2012).

    Article  Google Scholar 

  47. Rendu, W. et al. Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints. Proc. Natl Acad. Sci. USA 111, 81–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Radovčić, D., Sršen, A. O., Radovčić, J. & Frayer, D. W. Evidence for Neandertal jewelry: modified white-tailed eagle claws at Krapina. PLoS ONE 10, e0119802 (2015).

  49. Jaubert, J. et al. Early Neanderthal constructions deep in Bruniquel cave in southwestern France. Nature 534, 111–114 (2016).

    Article  CAS  Google Scholar 

  50. Hoffmann, D. L., Angelucci, D. E., Villaverde, V., Zapata, J. & Zilhão, J. Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago. Sci. Adv. 4, eaar5255 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hoffmann, D. L. et al. U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science 359, 912–915 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Pearce, D. G. & Bonneau, A. Trouble on the dating scene. Nat. Ecol. Evol. 2, 925–926 (2018).

    Article  PubMed  Google Scholar 

  53. Hoffmann, D. L. et al. Dates for Neanderthal art and symbolic behaviour are reliable. Nat. Ecol. Evol. 2, 1044–1045 (2018).

    Article  PubMed  Google Scholar 

  54. Carbonell, E. et al. Les premiers comportements funéraires auraient-ils pris place à Atapuerca, il y a 350 000 ans? L'Anthropologie 107, 1–14 (2003).

    Article  Google Scholar 

  55. Rodriguez-Hidalgo, A. et al. Human predatory behavior and the social implications of communal hunting based on evidence from the TD10. 2 bison bone bed at Gran Dolina (Atapuerca, Spain). J. Hum. Evol. 105, 89–122 (2017).

    Article  PubMed  Google Scholar 

  56. Sala, N. et al. Lethal interpersonal violence in the Middle Pleistocene. PLoS ONE 10, e0126589 (2015).

  57. Gracia, A. et al. Craniosynostosis in the Middle Pleistocene human Cranium 14 from the Sima de los Huesos, Atapuerca, Spain. Proc. Natl Acad. Sci. USA 106, 6573–6578 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bonmatí, A. et al. Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain. Proc. Natl Acad. Sci. USA 107, 18386–18391 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rink, W. J., Schwarcz, H. P., Smith, F. H. & Radovĉić, J. ESR ages for Krapina hominids. Nature 378, 24 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Sankararaman, S., Patterson, N., Li, H., Pääbo, S. & Reich, D. The date of interbreeding between Neandertals and modern humans. PLoS Genet. 8, e1002947 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arsuaga, J. L., Martínez, I., Gracia, A., Carretero, J. M. & Carbonell, E. Three new human skulls from the Sima de los Huesos Middle Pleistocene site in Sierra de Atapuerca, Spain. Nature 362, 534–537 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Pérez, P. J., Gracia, A., Martínez, I. & Arsuaga, J. L. Paleopathological evidence of the cranial remains from the Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain). Description and preliminary inferences. J. Hum. Evol. 33, 409–421 (1997).

    Article  PubMed  Google Scholar 

  63. Quam, R. Temporal Bone Anatomy and the Evolution of Acoustic Capacities in Fossil Humans. PhD thesis, State University of New York (2006).

  64. Wright, C. G. Development of the human external ear. J. Am. Acad. Audiol. 8, 379–382 (1997).

    CAS  PubMed  Google Scholar 

  65. Radovĉić, J., Smith, F., Trinkaus, E. & Wolpoff. M. H. The Krapina Hominids. An Illustrated Catalog of Skeletal Collection (Croatian Natural History Museum, 1988).

  66. Endo, B. & Kimura, T. in The Amud Man and his Cave Site (eds Suzuki, H. & Takai, F.) 231–406 (Univ. Tokyo Press, 1970).

  67. Valladas, H. et al. TL dates for the Neanderthal site of the Amud cave, Israel. J. Archaeol. Sci. 26, 259–268 (1999).

    Article  Google Scholar 

  68. Rink, W. et al. Electron spin resonance (ESR) and thermal ionization mass spectrometric (TIMS) 230Th/234U dating of teeth in Middle Paleolithic layers at Amud Cave, Israel. Geoarchaeology 16, 701–717 (2001).

    Article  Google Scholar 

  69. Boule, M. L’Homme fossile de La Chapelle-aux-Saints. Ann. Paleontol. 6, 111–172 (1911).

    Google Scholar 

  70. Grün, R. & Stringer, C. B. Electron spin resonance dating and the evolution of modern humans. Archaeometry 33, 153–199 (1991).

    Article  Google Scholar 

  71. Martin, H. L'Homme Fossile de La Quina (Gaston Doin, 1923).

  72. Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Coleman, M. N. & Colbert, M. W. Technical note: CT thresholding protocols for taking measurements on three-dimensional models. Am. J. Phys. Anthropol. 133, 723–725 (2007).

  74. Harris, R. W. Electromechanical analogies in acoustics. Appl. Acoust. 3, 265–281 (1970).

    Article  Google Scholar 

  75. Kringlebotn, M. Network model for the human middle ear. Scand. Audiol. 17, 75–85 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Rosowski, J. J. in Auditory Computation (eds Hawkins, H. L. et al.) 15–61 (Springer, 1996).

  77. Lampton, M. Transmission matrices in electroacoustics. Acta Acust. United Acust. 39, 239–251 (1978).

    Google Scholar 

  78. Aibara, R., Welsh, J. T., Puria, S. & Goode, R. L. Human middle-ear sound transfer function and cochlear input impedance. Hear. Res. 152, 100–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Radiocommunication Vocabulary ITU-R V.573e4 (International Telecommunication Union, 2007).

Download references

Acknowledgements

We thank the following individuals and institutions for providing access to fossils and specimens housed in their care: A. Balzeau (Musée de l’Homme, France) and I. Hershkovitz and J. Abramov (Tel Aviv University, Israel). CT scanning of the SH fossils was carried out at the Laboratorio de Evolución Humana (Burgos, Spain) by R. García and L. Rodríguez. Financial support for this study was provided by the Ministerio de Ciencia, Innovación y Universidades (PGC2018-093925-B-C33) of the Spanish Government. This project forms part of the Bioacústica Evolutiva y Paleoantropología research group of Universidad de Alcalá. M.C.-V. received a predoctoral grant from the Fundación Atapuerca. R.M.Q. received financial support from Binghamton University and the Ginés de los Ríos grant programme from the Universidad de Alcalá. A.D.V. received financial support from Binghamton University and the Fulbright Commission.

Author information

Authors and Affiliations

Authors

Contributions

M.C.-V., I.M., R.M.Q. and M.R. designed the research and wrote the article. M.C.-V., A.D.V. and C.L. reconstructed the 3D models for the study and collected data on the 3D models. M.R. and P.J. modelled the hearing results. J.M.B.C., E.C. and J.L.A. provided critical comments and directed the excavation and the research project at the Atapuerca sites.

Corresponding author

Correspondence to Mercedes Conde-Valverde.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Amelie Beaudet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 3D models of the external, middle and inner ear of the Sima de los Huesos fossils.

External auditory canal (green), middle ear cavity (blue), aditus (orange) and mastoid air cells (purple), inner ear (red).

Extended Data Fig. 2 Anatomical variables used to calculate the sound power transmission in the SH and Neanderthal individuals.

VAD = Volume of aditus; VMA = Volume of mastoid air cells; VMEC = Volume of tympanic cavity; LAD = Length of aditus; RAD(exit) = Radius of aditus exit; RAD(entrance) = Radius of aditus entrance; LEAC (Comp) = Complete length of external auditory canal; ATM = Area of tympanic membrane; AEAC = Cross-sectional area of the external auditory canal; AOW = Area of oval window; AFP = Area of stapes footplate; LM/LI = Malleus/incus lever ratio; MM + MI = Mass of malleus + incus; MS = Mass of stapes. LM/LI for SH calculated from the malleus (AT-3746) and the incus (AT-3747) belonging to the temporal bone AT-190721. MM + MI for SH was calculated from the malleus (AT-3746) and the incus (AT-3747) belonging to the temporal bone AT-190722. The same value has been used for the Neanderthals. MS: the values of Cr. 5 and AT-5518 have been measured directly, and the mean value of both specimens have been used for the rest of the SH and Neanderthal samples.

Extended Data Fig. 3 Sound power transmission (SPT) values and Exact test comparisons for H. sapiens, Neanderthals and SH.

Sound power transmission (SPT) at the entrance to the cochlea relative to P0 = 10−18 W for an incident plane wave intensity of 10−12 W/m2. In bold P < 0.05.

Extended Data Fig. 4 Comparison between values previously published and the present study for the occupied bandwidth and sound power transmission in three SH individuals.

Sound power transmission (SPT) at the entrance to the cochlea relative to P0 = 10−18 W for an incident plane wave intensity of 10−12 W/m2.

Extended Data Fig. 5 Results of the Exact test for the occupied bandwidth and sound power transmission between P. troglodytes and the SH sample.

Previous data for P. troglodytes sample21. Sound power transmission (SPT) at the entrance to the cochlea was calculated relative to P0 = 10−18 W for an incident plane wave intensity of 10−12 W/m2. In bold P < 0.05.

Extended Data Fig. 6 Correlations between the occupied bandwidth and anatomical variables calculated on the pooled modern human, SH and Neanderthal sample.

OBW = Occupied bandwidth; VAD = Volume of aditus; VMA = Volume of mastoid air cells; VMEC = Volume of tympanic cavity; LAD = Length of aditus; RAD(exit) = Radius of aditus exit; RAD(entrance) = Radius of aditus entrance; LEAC (Comp) = Complete length of external auditory canal; ATM = Area of tympanic membrane; AEAC = Cross-sectional area of the external auditory canal; AFP = Area of stapes footplate. In bold P < 0.05.

Extended Data Fig. 7 Results of the Exact test for the anatomical variables in the H. sapiens, SH and Neanderthal samples.

VAD = Volume of aditus; VMA = Volume of mastoid air cells; VMEC = Volume of tympanic cavity; LAD = Length of aditus; RAD(exit) = Radius of aditus exit; RAD(entrance) = Radius of aditus entrance; LEAC (Comp) = Complete length of external auditory canal; ATM = Area of tympanic membrane; AEAC = Cross-sectional area of the external auditory canal; AFP = Area of stapes footplate. In bold P < 0.05.

Extended Data Fig. 8 3D model of the external and middle ear cavities of La QuinaH5 showing the measurement of the variables used to estimate the sound power transmission through the outer and middle ear.

a, Complete 3D model of the ear structures showing the volumes of the mastoid air cells (VMA), of the aditus (VAD) and of the middle ear cavity (VMEC). b, 3D model of the aditus ad antrum showing measurement of the aditus exit (AAD(exit)), length (LAD) and entrance (AAD(entrance)). c, 3D model of the temporal bone and external auditory canal (EAC) showing the measurement of the length of the bony EAC (LEAC). d, 3D model of the EAC showing measurement of the size of the tympanic membrane (RTM1 and RTM2) and cross-section of the EAC (AEAC). e, 3D model of the oval window showing the measurement of the area (AOW). See Extended Data Fig. 9 for measurement definitions.

Extended Data Fig. 9 Definition of the anatomical measurements used to calculate the sound powertransmission through the outer and middle ears.

Definitions published before in refs. 15,21,22.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conde-Valverde, M., Martínez, I., Quam, R.M. et al. Neanderthals and Homo sapiens had similar auditory and speech capacities. Nat Ecol Evol 5, 609–615 (2021). https://doi.org/10.1038/s41559-021-01391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01391-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing