Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Urban biodiversity management using evolutionary tools

Abstract

Cities are fully functioning ecosystems and are home to no-analogue communities of species that interact with each other and which are subject to novel urban stressors. As such, biodiversity can evolve in response to these new urban conditions, making urban species a moving target for conservation and management efforts. An evolving urban biodiversity necessitates integrating evolutionary insights into management for these efforts to be successful in a dynamic urban milieu. Here we present a framework for categorizing urban biodiversity from a management perspective. We then discuss a suite of example management tools and their potential evolutionary implications—both their opportunities for and potential consequence to management. Urban ecosystems are proliferating but, far from being ecological lost causes, they may provide unique insights and opportunities for biodiversity conservation. Determining how to achieve urban biodiversity priorities while managing pest species requires evolutionary thinking.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustrating potential management tools in multiple evolutionary scenarios for four management targets.

References

  1. 1.

    Dearborn, D. C. & Kark, S. Motivations for conserving urban biodiversity. Conserv. Biol. 24, 432–449 (2009).

    PubMed  Google Scholar 

  2. 2.

    Shaffer, H. B. Urban biodiversity arks. Nat. Sustain. 1, 725–727 (2018).

    Google Scholar 

  3. 3.

    Soanes, K. et al. Correcting common misconceptions to inspire conservation action in urban environments. Conserv. Biol. 33, 300–306 (2019).

    PubMed  Google Scholar 

  4. 4.

    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).

    Google Scholar 

  5. 5.

    Donihue, C. M. & Lambert, M. R. Adaptive evolution in urban ecosystems. Ambio 44, 94–203 (2014).

    Google Scholar 

  6. 6.

    Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126 (2015).

    PubMed  Google Scholar 

  7. 7.

    Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Reid, N. M. et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354, 1305–1308 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Brans, K. I. et al. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Change Biol. 23, 5218–5227 (2017).

    Google Scholar 

  10. 10.

    Brans, K. I. et al. Urbanization drives genetic differentiation in physiology and structures the evolution of pace-of-life syndromes in the water flea Daphnia magna. Proc. R. Soc. B 285, 20180169 (2018).

    PubMed  Google Scholar 

  11. 11.

    Diamond, S. E. et al. Evolution of plasticity in the city: urban acorn ants can better tolerate more rapid increases in environmental temperature. Conserv. Physiol. 6, coy030 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Diamond, S. E. et al. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. R. Soc. B 285, 20180036 (2018).

    PubMed  Google Scholar 

  13. 13.

    Cheptou, P.-O. et al. Rapid evolution of seed dispersal in an urban environment in the weed. Crepis sancta. Proc. Natl Acad. Sci. USA 105, 3796–3799 (2008).

    CAS  PubMed  Google Scholar 

  14. 14.

    Gorton, A. J. et al. Little plant, big city: a test of adaptation to urban environments in common ragweed (Ambrosia artemisiifolia). Proc. R. Soc. B 285, 20180968 (2018).

    PubMed  Google Scholar 

  15. 15.

    Kern, E. M. A. & Langerhans, R. B. Urbanization drives contemporary evolution in stream fish. Glob. Change Biol. 24, 3791–3802 (2018).

    Google Scholar 

  16. 16.

    Schell, C. J. Urban evolutionary ecology and the potential benefits of implementing genomics. J. Hered. 109, 138–151 (2018).

    PubMed  Google Scholar 

  17. 17.

    De León, L. F. et al. Urbanization erodes niche segregation in Darwin’s finches. Evol. Appl. 12, 1329–1343 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Schilthuizen, M. Darwin Comes to Town: How the Urban Jungle Drives Evolution (Macmillan, 2018).

  19. 19.

    Koerner, B. I. How Cities Reshape the Evolutionary Path of Urban Wildlife (Wired, 2019).

  20. 20.

    Hendry, A. P. & Kinnison, M. T. The pace of modern life: measuring rates of contemporary microevolution. Evolution 53, 1637–1653 (1999).

    PubMed  Google Scholar 

  21. 21.

    Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).

    Google Scholar 

  22. 22.

    Li, E. et al. An urban biodiversity assessment framework that combines an urban habitat classification scheme and citizen science data. Front. Ecol. Evol. 7, 277 (2019).

    CAS  Google Scholar 

  23. 23.

    Derry, A. M. et al. Conservation through the lens of (mal)adaptation: concepts and meta-analysis. Evol. Appl. 12, 1287–1304 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279, 2072–2080 (2012).

    PubMed  Google Scholar 

  25. 25.

    Merilä, J. & Hendry, A. P. Climate Change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl Acad. Sci. USA 114, 8951–8956 (2017).

    CAS  PubMed  Google Scholar 

  27. 27.

    Diamond, S. E., Chick, L., Perez, A., Strickler, S. A. & Martin, R. A. Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biol. J. Linnean Soc. 121, 248–257 (2017).

    Google Scholar 

  28. 28.

    Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. B 205, 581–598 (1979).

    CAS  Google Scholar 

  29. 29.

    Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).

    PubMed  Google Scholar 

  30. 30.

    Littleford-Colquhoun, B. L., Clemente, C., Whiting, M. J., Ortiz-Barrientos, D. & Frere, C. H. Archipelagos of the Anthropocene: rapid and extensive differentiation of native terrestrial vertebrates in a single metropolis. Mol. Ecol. 26, 2466–2481 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).

    PubMed  Google Scholar 

  32. 32.

    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

    PubMed  Google Scholar 

  33. 33.

    Munshi-South, J., Zolnik, C. P. & Harris, S. E. Population genomics of the Anthropocene: urbanization is negatively associated with genome-wide variation in white-footed mouse populations. Evol. Appl. 9, 546–564 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Combs, M. et al. Spatial population genomics of the brown rat (Rattus norvegicus) in New York City. Mol. Ecol. 27, 83–98 (2017).

    PubMed  Google Scholar 

  35. 35.

    Richardson, J. L. et al. Significant genetic impacts accompany an urban rat control campaign in Salvador, Brazil. Front. Ecol. Evol. 7, 115 (2019).

    Google Scholar 

  36. 36.

    Combs, M., Byers, K., Himsworth, C. & Munshi-South, J. Harnessing population genetics for pest management: theory and application for urban rats. Hum.-Wildl. Interact. 13, 250–263 (2019).

    Google Scholar 

  37. 37.

    Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2009).

    PubMed  Google Scholar 

  38. 38.

    Hostetler, M., Allen, W. & Meurk, C. Conserving urban biodiversity? Creating green infrastructure is only the first step. Landsc. Urban Plan. 100, 369–371 (2011).

    Google Scholar 

  39. 39.

    Carlson, S. M. et al. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    PubMed  Google Scholar 

  40. 40.

    Cook, C. N. & Sgrò, C. M. Poor understanding of evolutionary theory is a barrier to effective conservation management. Conserv. Lett. 12, e12619 (2018).

    Google Scholar 

  41. 41.

    Piersma, T. & Drent, J. Phenotypic plasticity and the evolution of organismal design. Trends Ecol. Evol. 18, 228–233 (2003).

    Google Scholar 

  42. 42.

    Martin, L. B., Ghalambor, C. K. & Woods, H. A. Integrative Organismal Biology (Wiley-Blackwell, 2015).

  43. 43.

    Brander, S. M., Biales, A. D. & Connon, R. E. The role of epigenomics in aquatic toxicology. Environ. Toxicol. Chem. 36, 2565–2573 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    McNew, S. M. et al. Epigenetic variation between urban and rural populations of Darwin’s finches. BMC Evol. Biol. 17, 183 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hale, R., Swearer, S. E., Sievers, M. & Coleman, R. Balancing biodiversity outcomes and pollution management in urban stormwater treatment wetlands. J. Environ. Man. 233, 302–307 (2019).

    Google Scholar 

  46. 46.

    Gallagher, M. T. et al. The role of pollutant accumulation in determining the use of stormwater ponds by amphibians. Wetland Ecol. Man. 22, 551–564 (2014).

    CAS  Google Scholar 

  47. 47.

    Brand, A., Snodgrass, J. W., Gallagher, M. T., Casey, R. E. & Van Meter, R. Lethal and sublethal effects of embryonic and larval exposure of Hyla versicolor to stormwater pond sediments. Arch. Environ. Contam. Toxicol. 58, 325–331 (2010).

    CAS  PubMed  Google Scholar 

  48. 48.

    Snodgrass, J. W., Casey, R. E., Joseph, D. & Simon, J. A. Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: variation in sensitivity among species. Environ. Pollut. 154, 291–297 (2008).

    CAS  PubMed  Google Scholar 

  49. 49.

    Simon, J. A., Snodgrass, J. W., Casey, R. E. & Sparling, D. W. Spatial correlates of amphibian use of constructed wetlands in an urban landscape. Landsc. Ecol. 24, 361–373 (2009).

    Google Scholar 

  50. 50.

    Holzer, K. A. Amphibian use of constructed and remnant wetlands in an urban landscape. Urban Ecosyst. 17, 955–968 (2014).

    Google Scholar 

  51. 51.

    Guderyahn, L. B., Smithers, A. P. & Mims, M. C. Assessing habitat requirements of pond-breeding amphibians in a highly urbanized landscape: implications for management. Urban Ecosyst. 19, 1801–1821 (2016).

    Google Scholar 

  52. 52.

    Holtmann, L., Phillipp, K., Becke, C. & Fartmann, T. Effects of habitat and landscape quality on amphibian assemblages of urban stormwater ponds. Urban Ecosyst. 20, 1249–1259 (2017).

    Google Scholar 

  53. 53.

    Miles, L. S., Johnson, J. C., Dyer, R. J. & Verrelli, B. C. Urbanization as a facilitator of gene flow in a human health pest. Mol. Ecol. 27, 3219–3230 (2018).

    Google Scholar 

  54. 54.

    Miles, L. S., Dyer, R. J. & Verrelli, B. C. Urban hubs of connectivity, contrasting patterns of gene flow within and among cities in the western black widow spider. Proc. R. Soc. B 285, 20181224 (2018).

    PubMed  Google Scholar 

  55. 55.

    Shepack, A. et al. Species absence in developed landscapes: an experimental evaluation. Landsc. Ecol. 32, 609–615 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank B. Rosenblum, T. Jenkinson, O. Hernández-Gómez, M. Womack, M. Grundler, A. Rothstein, A. Byrne, K. Klonoski and C. Noss for providing critical feedback on this manuscript. The ideas in this manuscript benefited from conversations with M. Alberti, E. Carlen, S. Des Roches, K. Dyson, T. L. Fuentes, L. Guderyahn, G. B. Pauly, C. E. Santoro, C. J. Schell, O. J. Schmitz, H. B. Shaffer and I. Wang. We thank B. Verrelli for feedback that improved this manuscript.

Author information

Affiliations

Authors

Contributions

M.R.L. initiated the project. Both authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Max R. Lambert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lambert, M.R., Donihue, C.M. Urban biodiversity management using evolutionary tools. Nat Ecol Evol 4, 903–910 (2020). https://doi.org/10.1038/s41559-020-1193-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing