Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Management implications of long transients in ecological systems

Abstract

The underlying biological processes that govern many ecological systems can create very long periods of transient dynamics. It is often difficult or impossible to distinguish this transient behaviour from similar dynamics that would persist indefinitely. In some cases, a shift from the transient to the long-term, stable dynamics may occur in the absence of any exogenous forces. Recognizing the possibility that the state of an ecosystem may be less stable than it appears is crucial to the long-term success of management strategies in systems with long transient periods. Here we demonstrate the importance of considering the potential of transient system behaviour for management actions across a range of ecosystem organizational scales and natural system types. Developing mechanistic models that capture essential system dynamics will be crucial for promoting system resilience and avoiding system collapses.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A modified adaptive management cycle that includes consideration of potential long transient system behaviour.
Fig. 2: Managing to stay on a transient, an example taken from invasion dynamics.
Fig. 3: Managing to escape a ghost attractor, an example taken from lake eutrophication.
Fig. 4: Potential outcomes of managing a ghost attractor present in a lake ecosystem.
Fig. 5: Schematic of a social–ecological system with slow and fast variables that produces long transients under fixed management schemes.
Fig. 6: Managing to avoid a slow–fast induced transient, based on a lake social–ecological system.

References

  1. Sardain, A., Sardain, E. & Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2, 274–282 (2019).

    Article  Google Scholar 

  2. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  PubMed  CAS  Google Scholar 

  3. Pöysä, H. et al. Changes in species richness and composition of boreal waterbird communities: a comparison between two time periods 25 years apart. Sci. Rep. 9, 1725 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Underwood, G. J. C. et al. Organic matter from Arctic sea-ice loss alters bacterial community structure and function. Nat. Clim. Change 9, 170–176 (2019).

    Article  Google Scholar 

  5. Kubicek, A., Breckling, B., Hoegh-Guldberg, O. & Reuter, H. Climate change drives trait-shifts in coral reef communities. Sci. Rep. 9, 3721 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article  Google Scholar 

  7. Hastings, A. Timescales, dynamics, and ecological understanding. Ecology 91, 3471–3480 (2010).

    Article  PubMed  Google Scholar 

  8. Hastings, A. Timescales and the management of ecological systems. Proc. Natl Acad. Sci. USA 113, 14568–14573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hastings, A. Transients: the key to long-term ecological understanding? Trends Ecol. Evol. 19, 39–45 (2004).

    Article  PubMed  Google Scholar 

  10. Hastings, A. & Higgins, K. Persistence of transients in spatially structured ecological models. Science 263, 1133–1136 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Hastings, A. Transient dynamics and persistence of ecological systems. Ecol. Lett. 4, 215–220 (2001).

    Article  Google Scholar 

  12. Likens, G. E. (ed.) Long-Term Studies in Ecology: Approaches and Alternatives (Springer, 1989).

  13. Franklin, J. F., Bledsoe, C. S. & Callahan, J. T. Contributions of the Long-term Ecological Research program. Bioscience 40, 509–523 (1990).

    Article  Google Scholar 

  14. Ratajczak, Z. et al. The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales. Ecol. Monogr. 87, 198–218 (2017).

    Article  Google Scholar 

  15. Hastings, A. et al. Transient phenomena in ecology. Science 361, eaat6412 (2018).

    Article  PubMed  CAS  Google Scholar 

  16. Morozov, A. et al. Long transients in ecology: theory and applications. Phys. Life Rev. 32, 1–40 (2020).

    Article  PubMed  Google Scholar 

  17. Holling, C. S. Adaptive Environmental Assessment and Management (International Institute for Applied Systems Analysis, 1978).

  18. Walters, C. Adaptive Management of Renewable Resources (Macmillan, 1986).

  19. Lee, K. N. Appraising adaptive management. Conserv. Ecol. 3, 3 (1999).

    Google Scholar 

  20. Gunderson, L. & Light, S. S. Adaptive management and adaptive governance in the Everglades ecosystem. Policy Sci. 39, 323–334 (2006).

    Article  Google Scholar 

  21. Franklin, J. Biological legacies: a critical management concept from Mount St. Helens. In Trans. 55th North American Wildlife and Natural Resources Conference (1990).

  22. Funk, J. L. et al. Keys to enhancing the value of invasion ecology research for management. Biol. Invasions https://doi.org/10.1007/s10530-020-02267-9 (2020).

  23. Beaury, E. M. et al. Incorporating climate change into invasive species management: insights from managers. Biol. Invasions 22, 233–252 (2020).

    Article  Google Scholar 

  24. Cuddington, K. et al. Process-based models are required to manage ecological systems in a changing world. Ecosphere https://doi.org/10.1890/ES12-00178.1 (2013).

  25. White, J. W., Botsford, L. W., Hastings, A., Baskett, M. L. & Kaplan, D. M. Transient responses of fished populations to marine reserve establishment. Conserv. Lett. 6, 180–191 (2013).

    Article  Google Scholar 

  26. Kaplan, K. A. et al. Setting expected timelines of fished population recovery for the adaptive management of a marine protected area network. Ecol. Appl. https://doi.org/10.1002/eap.1949 (2019).

  27. Hopf, J. K., Jones, G. P., Williamson, D. H. & Connolly, S. R. Marine reserves stabilize fish populations and fisheries yields in disturbed coral reef systems. Ecol. Appl. 29, e01905 (2019).

    Article  PubMed  Google Scholar 

  28. Caselle, J. E., Davis, K. & Marks, L. M. Marine management affects the invasion success of a non-native species in a temperate reef system in California, USA. Ecol. Lett. 21, 43–53 (2018).

    Article  PubMed  Google Scholar 

  29. Mahmood, A. H. et al. Comparison of techniques to control the aggressive environmental invasive species Galenia pubescens in a degraded grassland reserve, Victoria, Australia. PLoS ONE 13, 1–16 (2018).

    Google Scholar 

  30. Liebhold, A. M. et al. Eradication of invading insect populations: from concepts to applications. Annu. Rev. Entemol. 61, 335–352 (2016).

    Article  CAS  Google Scholar 

  31. Isbell, F. et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11911–11916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clark, C. M. & Tilman, D. Recovery of plant diversity following N cessation: effects of recruitment, litter, and elevated N cycling. Ecology 91, 3620–3630 (2010).

    Article  PubMed  Google Scholar 

  33. Storkey, J. et al. Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528, 401–404 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Brettin, A. Ecological Management Practices Informed by Flow–Kick Dynamics. PhD thesis, Univ. Minnesota (2019).

  35. Meyer, K. et al. Quantifying resilience to recurrent ecosystem disturbances using flow–kick dynamics. Nat. Sustain. 1, 671–678 (2018).

    Article  Google Scholar 

  36. Schindler, D. W. The dilemma of controlling cultural eutrophication of lakes. Proc. R. Soc. B 279, 4322–4333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E. & Orihel, D. M. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 50, 8923–8929 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Scheffer, M., Carpenter, S. R., Foley, J. E., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Hopf, J. K., Jones, G. P., Williamson, D. H. & Connolly, S. R. Fishery consequences of marine reserves: short-term pain for longer-term gain. Ecol. Appl. 26, 818–829 (2016).

    Article  PubMed  Google Scholar 

  40. Hobbs, W. O. et al. A 200-year perspective on alternative stable state theory and lake management from a biomanipulated shallow lake. Ecol. Appl. 22, 1483–1496 (2012).

    Article  PubMed  Google Scholar 

  41. Fastner, J. et al. Combating cyanobacterial proliferation by avoiding or treating inflows with high P load-experiences from eight case studies. Aquat. Ecol. 50, 367–383 (2016).

    Article  CAS  Google Scholar 

  42. Vollenweider, R. A. Input-output models with special reference to the phosphorus loading concept in limnology. Schweiz. Z. Hydrol. 37, 53–84 (1975).

    CAS  Google Scholar 

  43. Cullen, P. & Forsberg, C. Experiences with reducing point sources of phosphorus to lakes. Hydrobiologia 170, 321–336 (1988).

    Article  CAS  Google Scholar 

  44. Jeppesen, E. et al. Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies. Freshwat. Biol. 50, 1747–1771 (2005).

    Article  CAS  Google Scholar 

  45. Carpenter, S. R. & Brock, W. A. Spatial complexity, resilience, and policy diversity: fishing on lake-rich landscapes. Ecol. Soc. 9, 8 (2004).

    Article  Google Scholar 

  46. Walters, C. & Kitchell, J. F. Cultivation/depensation effects on juvenile survival and recruitment: implications for the theory of fishing. Can. J. Fish. Aquat. Sci. 58, 39–50 (2001).

    Article  Google Scholar 

  47. Carpenter, S. R. Ecological futures: building an ecology of the long now. Ecology 83, 2069–2083 (2002).

    Google Scholar 

  48. Carpenter, S. R. Regime Shifts in Lake Ecosystems: Pattern and Variation (Ecology Institute, 2003).

  49. Francis, T. B. & Schindler, D. E. Degradation of littoral habitats by residential development: woody debris in lakes of the Pacific Northwest and Midwest, United States. Ambio 35, 274–280 (2006).

  50. Christensen, D. L., Herwig, B. R., Schindler, D. E. & Carpenter, S. R. Impacts of lakeshore residential development on coarse woody debris in north temperate lakes. Ecol. Appl. 6, 1143–1149 (1996).

    Article  Google Scholar 

  51. Grebogi, C., Ott, E. & Yorke, J. A. Crises, sudden changes in chaotic attractors and chaotic transients. Phys. D 7, 181–200 (1983).

    Article  Google Scholar 

  52. Tél, T. in Directions in Chaos (3): Experimental Study and Characterization of Chaos (ed. Hao, B.-L.) 149–211 (World Scientific, 1990).

  53. Lai, Y.-C. & Tél, T. Transient Chaos: Complex Dynamics on Finite-Time Scales (Springer, 2011).

  54. McCann, K. S. & Yodzis, P. Nonlinear dynamics and population disappearances. Am. Nat. 144, 873–879 (1994).

    Article  Google Scholar 

  55. Schiff, S. J. et al. Controlling chaos in the brain. Nature 370, 615–620 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Dhamala, M. & Lai, Y.-C. Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology. Phys. Rev. E 59, 1646–1655 (1999).

    Article  CAS  Google Scholar 

  57. Hilker, F. M. & Westerhoff, F. H. Preventing extinction and outbreaks in chaotic populations. Am. Nat. 170, 232–241 (2007).

    Article  PubMed  Google Scholar 

  58. Park, M.-G., Park, S.-A., Cho, K. & Jang, B. Controlling transient of species in food chain. Proc. Korean Ind. Appl. Math. Assoc. 6, 249–253 (2011).

    Google Scholar 

  59. Tel, T. Controlling transient chaos. J. Phys. A 24, L1359–L1368 (1991).

    Article  Google Scholar 

  60. Lai, Y.-C. & Grebogi, C. Converting transient chaos into sustained chaos by feedback control. Phys. Rev. E 49, 1094–1098 (1994).

    Article  CAS  Google Scholar 

  61. Schwartz, I. B. & Triandaf, I. Sustaining chaos by using basin boundary saddles. Phys. Rev. Lett. 77, 4740–4743 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Ott, E., Grebogi, C. & Yorke, J. A. Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20 (2010).

    Article  Google Scholar 

  64. Walters, C. J. & Holling, C. S. Large-scale management experiments and learning by doing. Ecology 71, 2060–2068 (1990).

    Article  Google Scholar 

  65. Bulman, C. R. et al. Minimum viable metapopulation size, extinction debt, and the conservation of a declining species. Ecol. Appl. 17, 1460–1473 (2007).

    Article  PubMed  Google Scholar 

  66. Mcdonald, J. L., Stott, I., Townley, S. & Hodgson, D. J. Transients drive the demographic dynamics of plant populations in variable environments. J. Ecol. 104, 306–314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Carpenter, S. R. & Gunderson, L. H. Coping with collapse: ecological and social dynamics in ecosystem management. Bioscience 51, 451–457 (2001).

    Article  Google Scholar 

  68. Fulton, E. A. et al. A multi-model approach to engaging stakeholder and modellers in complex environmental problems. Environ. Sci. Policy 48, 44–56 (2015).

    Article  Google Scholar 

  69. Plagányi, É. E. et al. Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish. 15, 1–22 (2014).

    Article  Google Scholar 

  70. Collie, J. S. et al. Ecosystem models for fisheries management: finding the sweet spot. Fish Fish. 17, 101–125 (2016).

    Article  Google Scholar 

  71. Rowland, J. A. et al. Selecting and applying indicators of ecosystem collapse for risk assessments. Conserv. Biol. 32, 1233–1245 (2018).

    Article  PubMed  Google Scholar 

  72. Silvertown, J. et al. The Park Grass Experiment 1856–2006: its contribution to ecology. J. Ecol. 94, 801–814 (2006).

    Article  CAS  Google Scholar 

  73. Pace, M. L., Carpenter, S. R. & Wilkinson, G. M. Long-term studies and reproducibility: lessons from whole-lake experiments. Limnol. Oceanogr. 64, S22–S33 (2019).

    Article  CAS  Google Scholar 

  74. McGlathery, K. J. et al. Nonlinear dynamics and alternative stable states in shallow coastal systems. Oceanography 26, 220–231 (2013).

    Article  Google Scholar 

  75. Van Cleve, K. & Martin, S. (eds) Long-Term Ecological Research in the United States: A Network of Research Sites 6th edn (Long Term Ecological Research Office, 1991).

  76. Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere https://doi.org/10.1890/ES11-00216.1 (2011).

  77. Reed-Andersen, T., Carpenter, S. R. & Lathrop, R. C. Phosphorus flow in a watershed-lake ecosystem. Ecosystems 3, 561–573 (2000).

    Article  CAS  Google Scholar 

  78. Bell, D. M. et al. Long-term ecological research and evolving frameworks of disturbance ecology. BioScience 70, 141–156 (2020).

    Article  Google Scholar 

  79. Pahl-Wostl, C. A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Glob. Environ. Change 19, 354–365 (2009).

    Article  Google Scholar 

  80. White, J. W. et al. Transient responses of fished populations to marine reserve establishment. Conserv. Lett. 6, 180–191 (2013).

    Article  Google Scholar 

  81. Chadès, I. et al. Optimization methods to solve adaptive management problems. Theor. Ecol. 10, 1–20 (2017).

    Article  Google Scholar 

  82. Kot, M. Elements of Mathematical Ecology (Cambridge Univ. Press, 2001).

  83. Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Addison-Wesley, 1994).

Download references

Acknowledgements

This work was conducted as part of the Long Transients and Ecological Forecasting Working Group at the National Institute for Mathematical and Biological Synthesis, supported by the National Science Foundation through NSF Award no. DBI-1300426, with additional support from The University of Tennessee, Knoxville, and NSF Award no. CCS-1521672.

Author information

Authors and Affiliations

Authors

Contributions

T.B.F. developed the concept; K.C.A., K.C., T.B.F., A.H., Y.-C.L. and M.L.Z. conceived of and wrote the case studies; K.C.A., K.C., T.B.F. and Y.-C.L. designed analytical tools and modelling experiments; K.C.A., K.C., T.B.F. and G.G. produced figures; K.C.A., K.C., T.B.F., G.G., A.H., Y.-C.L., A.M., S.P. and M.L.Z. wrote the paper. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to Tessa B. Francis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Illustrated Dynamical Systems Glossary.

Illustrations of terms and concepts (capitalized words) defined in Box 1. The left column represents a two-component system (e.g. a two-species community, or any system where the current state can be represented using two variables) as a landscape (blue surface). Dynamics are expected to proceed the way a ball would roll on these landscapes. Orange paths on these surfaces are examples of how a ball might roll from a particular starting point. The right column shows simulated dynamics, including stochasticity, for one species or variable on such a surface.

Extended Data Fig. 2 Invader density under alternative dynamical behavior assumptions and management.

Histograms of the time-averaged N2 density during 50 years of management, for 100 replicate simulations of the system in Fig. 1(d-f), for different models (column titles) and management actions (row titles). Note that the “Add N1” scenario when (K1,0) is a saddle (top middle and top right) had to be plotted using a different x-axis range than the others. Dashed vertical lines mark the mean of each distribution.

Extended Data Fig. 3 Management action frequency under alternative dynamical behavior assumptions.

Histograms of the number of management actions needed in the same replicate simulations as Fig. S1. Note that the “Add N1” scenario when (K1,0) is a saddle (top middle and top right) had to be plotted using a different x-axis range than the others. Dashed vertical lines mark the mean of each distribution.

Supplementary information

Supplementary Information

Supplementary methods, results and Table 1.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Francis, T.B., Abbott, K.C., Cuddington, K. et al. Management implications of long transients in ecological systems. Nat Ecol Evol 5, 285–294 (2021). https://doi.org/10.1038/s41559-020-01365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01365-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing