2,100 years of human adaptation to climate change in the High Andes

Abstract

Humid montane forests are challenging environments for human habitation. We used high-resolution fossil pollen, charcoal, diatom and sediment chemistry data from the iconic archaeological setting of Laguna de los Condores, Peru to reconstruct changing land uses and climates in a forested Andean valley. Forest clearance and maize cultivation were initiated during periods of drought, with periods of forest recovery occurring during wetter conditions. Between ad 800 and 1000 forest regrowth was evident, but this trend was reversed between ad 1000 and 1200 as drier conditions coincided with renewed land clearance, the establishment of a permanent village and the use of cliffs overlooking the lake as a burial site. By ad 1230 forests had regrown in the valley and maize cultivation was greatly reduced. An elevational transect investigating regional patterns showed a parallel, but earlier, history of reduced maize cultivation and forest regeneration at mid-elevation. However, a lowland site showed continuous maize agriculture until European conquest but very little subsequent change in forest cover. Divergent, climate-sensitive landscape histories do not support categorical assessments that forest regrowth and peak carbon sequestration coincided with European arrival.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The location of Laguna de los Condores, Pomacochas and Sauce, Peru.
Fig. 2: The abundance of selected fossil pollen taxa from Laguna de los Condores, Peru, plotted against time.
Fig. 3: Decadal-scale climate oscillations, human disturbance and forest impacts at Laguna de los Condores, Peru.
Fig. 4: Centennial-scale climate change and changing land use at Laguna de los Condores, Peru.
Fig. 5: Pollen representation across an elevational gradient through Chachapoya, Peru.
Fig. 6: The elevational gradient showing hypothesized changes in ground-level cloud immersion at Sauce, Pomacochas and Condores.

Data availability

The datasets generated from this study are available through NEOTOMA Paleoecology Database (https://neotomadb.org/), which include pollen, charcoal, diatom, loss-on-ignition (carbonate) and XRF (Ti, Si and Ca) data visualized in Figs. 24.

References

  1. 1.

    Lanning, E. P. Peru before the Incas (Prentice-Hall, 1967).

  2. 2.

    Oficina Nacional de Evaluación de Recursos Naturales (Mapa Ecológico del Perú, 1976).

  3. 3.

    Steward, J. H. Handbook of South American Indians, Vol. 3: The Tropical Forest Tribes (Smithsonian Institution, 1948).

  4. 4.

    Church, W. & Álvarez, L. V. Gran Pajatén y su contexto en el paisaje prehispánico Pataz-Abiseo. Bol. Arqueol. PUCP 23, 57–93 (2018).

  5. 5.

    Church, W. B. & von Hagen, A. in The Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 903–926 (Springer, 2008).

  6. 6.

    Guengerich, A. & Church, W. B. Una mirada hacia el futuro: nuevas direcciones en la arqueología de los Andes nororientales. Bol. Arqueol. PUCP 23, 313–334 (2018).

  7. 7.

    Bush, M. B., Mosblech, N. A. S. & Church, W. Climate change and the agricultural history of a mid-elevation Andean montane forest. Holocene 25, 1522–1532 (2015).

  8. 8.

    Loughlin, N. J., Gosling, W. D., Mothes, P. & Montoya, E. Ecological consequences of post-Columbian indigenous depopulation in the Andean–Amazonian corridor. Nat. Ecol. Evol. 2, 1233 (2018).

  9. 9.

    Schiferl, J. D., Bush, M. B., Silman, M. R. & Urrego, D. H. Vegetation responses to late Holocene climate changes in an Andean forest. Quat. Res. 89, 60–74 (2018).

  10. 10.

    Bonavia, D. in The Inca World: The Development of Pre-Columbian Peru. (ed. Laurencich Minelli, L.) 121–131 (Univ. Oklahoma Press, 2000).

  11. 11.

    Dull, R. A. et al. The columbian encounter and the little ice age: abrupt land use change, fire, and greenhouse forcing. Ann. Assoc. Am. Geogr. 100, 755–771 (2010).

  12. 12.

    Nevle, R., Bird, D., Ruddiman, W. & Dull, R. Neotropical human–landscape interactions, fire, and atmospheric CO2 during European conquest. Holocene 21, 853–864 (2011).

  13. 13.

    Koch, A., Brierley, C., Maslin, M. M. & Lewis, S. L. Earth system impacts of the european arrival and great dying in the americas after 1492. Quat. Sci. Rev. 207, 13–36 (2019).

  14. 14.

    Fehren-Schmitz, L., Harkins, K. M. & Llamas, B. A paleogenetic perspective on the early population history of the high altitude Andes. Quat. Int. 461, 25–33 (2017).

  15. 15.

    Young, K. R. Andean land use and biodiversity: Humanized landscapes in a time of change. Ann. Bot. Gard. 96, 492–507 (2009).

  16. 16.

    Church, W. Early occupations at Gran Pajatén, Peru. Andean Past 4, 281–318 (1994).

  17. 17.

    Gnecco, C. & Aceituno, J. in Paleoindian Archaeology: A Hemispheric Perspective (eds Morrow, J. E. & Gnecco, C.) 86–104 (Univ. Florida Press, 2006).

  18. 18.

    Kanner, L. C., Burns, S. J., Cheng, H., Edwards, R. L. & Vuille, M. High-resolution variability of the South American summer monsoon over the last seven millennia: insights from a speleothem record from the central Peruvian Andes. Quat. Sci. Rev. 75, 1–10 (2013).

  19. 19.

    Bird, B. W. et al. A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc. Natl Acad. Sci. USA 108, 8583–8588 (2011).

  20. 20.

    Apaéstegui, J. et al. Hydroclimate variability of the northwestern Amazon Basin near the Andean foothills of Peru related to the South American Monsoon System during the last 1,600 years. Clim. Past 10, 1967–1981 (2014).

  21. 21.

    Binford, M. W. et al. Climate variation and the rise and fall of an Andean civilization. Quat. Res. 47, 235–248 (1997).

  22. 22.

    Meggers, B. J. Archaeological evidence for the impact of mega-Niño events on Amazonia during the past two millennia. Nat. Clim. Change 28, 321–338 (1994).

  23. 23.

    Williams, P. R. Rethinking disaster-induced collapse in the demise of the Andean highland states: Wari and Tiwanaku. World Archaeol. 33, 361–374 (2002).

  24. 24.

    Erickson, C. L. Neo-environmental determinism and agrarian ‘collapse’ in Andean prehistory. Antiquity 73, 634 (1999).

  25. 25.

    Neves, E. G. in The Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 359–379 (Springer, 2008).

  26. 26.

    Dillehay, T. D., Eling, H. H. Jr. & Rossen, J. Preceramic irrigation canals in the Peruvian Andes. Proc. Natl Acad. Sci. USA 102, 17241–17244 (2005).

  27. 27.

    Erickson, C. L. Raised field agriculture in the Lake Titicaca basin: putting ancient agriculture back to work. Expedition 30, 8–16 (1988).

  28. 28.

    Mitchell, W. P. On terracing in the Andes. Curr. Anthropol. 26, 288–289 (1985).

  29. 29.

    Sandweiss, D. H. et al. Variation in Holocene El Niño frequencies: climate records and cultural consequences in ancient Peru. Geology 29, 603–606 (2001).

  30. 30.

    Schreiber, K. J. in Wari, Lords of the Ancient Andes (eds Bergh, S.E. & Castillo, L.J.) 31–45 (Thames & Hudson, 2012).

  31. 31.

    Dillehay, T. D. & Kolata, A. Long-term human response to uncertain environmental conditions in the Andes. Proc. Natl Acad. Sci. USA 101, 4325–4330 (2004).

  32. 32.

    Cherkinsky, A. & Urton, G. Radiocarbon chronology of Andean khipus. Open J. Archaeom. 2, 32–36 (2014).

  33. 33.

    Wild, E. M., Guillen, S., Kutschera, W., Seidler, H. & Steier, P. Radiocarbon dating of the Peruvian Chachapoya/Inca site at the Laguna de los Condores. Nucl. Instrum. Methods Phys. Res. B 259, 378–383 (2007).

  34. 34.

    Guillén, S. in Chachapoyas: El Reino Perdido (eds González, E. et al.) 344–387 (AFP lntegra, 2002).

  35. 35.

    von Hagen, A. in Chachapoyas: El Reino Perdido (eds González, E. et al.) 254–265 (AFP lntegra, 2002).

  36. 36.

    Stansell, N. D. et al. Proglacial lake sediment records reveal Holocene climate changes in the Venezuelan Andes. Quat. Sci. Rev. 89, 44–55 (2014).

  37. 37.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., P.G., J. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

  38. 38.

    Colose, C. M., LeGrande, A. N. & Vuille, M. The influence of volcanic eruptions on the climate of tropical South America during the last millennium in an isotope-enabled general circulation model. Clim. Past 12, 961–979 (2016).

  39. 39.

    Sagredo, E. A. et al. Equilibrium line altitudes along the Andes during the Last millennium: Paleoclimatic implications. Holocene 27, 1019–1033 (2017).

  40. 40.

    van Breukelen, M. R., Vonhof, H. B., Hellstrom, J. C., Wester, W. C. G. & Kroon, D. Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet. Sci. Lett. 275, 54–60 (2008).

  41. 41.

    Hardwick, S. R. Interactions between Vegetation and Microclimate in a Heterogeneous Tropical Landscape. PhD thesis, Imperial College London (2015).

  42. 42.

    Lippok, D. et al. Forest recovery of areas deforested by fire increases with elevation in the tropical Andes. For. Ecol. Manage. 295, 69–76 (2013).

  43. 43.

    Zhang, M. et al. Response of surface air temperature to small-scale land clearing across latitudes. Environ. Res. Lett. 9, 034002 (2014).

  44. 44.

    Stirling, C., Rodrigo, V. & Emberru, J. Chilling and photosynthetic productivity of field grown maize (Zea mays); changes in the parameters of the light-response curve, canopy leaf CO2 assimilation rate and crop radiation-use efficiency. Photosynth. Res. 38, 125–133 (1993).

  45. 45.

    Garreaud, R., Vuille, M., Compagnucci, R. & Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 180–195 (2009).

  46. 46.

    Rapp, J. M. & Silman, M. R. Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Clim. Res. 55, 17–32 (2012).

  47. 47.

    Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytol. 214, 1019–1032 (2017).

  48. 48.

    Letts, M. G. & Mulligan, M. The impact of light quality and leaf wetness on photosynthesis in north-west Andean tropical montane cloud forest. J. Trop. Ecol. 21, 549–557 (2005).

  49. 49.

    Weng, C., Bush, M. B. & Silman, M. R. An analysis of modern pollen rain on an elevational gradient in southern Peru. J. Trop. Ecol. 20, 113–124 (2004).

  50. 50.

    Urrego, D. H., Silman, M. R., Correa-Metrio, A. & Bush, M. B. Pollen–vegetation relationships along steep climatic gradients in western Amazonia. J. Veg. Sci. 22, 795–806 (2011).

  51. 51.

    Grabandt, R. A. J. Pollen rain in relation to arboreal vegetation in the Columbian Cordillera Oriental. Rev. Palaeobot. Palynol. 29, 65–147 (1980).

  52. 52.

    Whitney, B. S. et al. Constraining pollen-based estimates of forest cover in the Amazon: a simulation approach. Holocene 29, 262–270 (2019).

  53. 53.

    Szczepocka, E. & Szulc, B. The use of benthic diatoms in estimating water quality of variously polluted rivers. Oceanol. Hydrobiol. Stud. 38, 17–26 (2009).

  54. 54.

    Michelutti, N. et al. Climate change forces new ecological states in tropical Andean lakes. PLoS ONE 10, e0115338 (2015).

  55. 55.

    Sayer, C., Roberts, N., Sadler, J., David, C. & Wade, P. Biodiversity changes in a shallow lake ecosystem: a multi‐proxy palaeolimnological analysis. J. Biogeogr. 26, 97–114 (1999).

  56. 56.

    Cremer, H. & Wagner, B. Planktonic diatom communities in High Arctic lakes (Store Koldewey, Northeast Greenland). Can. J. Bot. 82, 1744–1757 (2004).

  57. 57.

    Lane, C. S., Cummings, K. E. & Clark, J. J. Maize pollen deposition in modern lake sediments: a case study from Northeastern Wisconsin. Rev. Palaeobot. Palynol. 159, 177–187 (2010).

  58. 58.

    Piperno, D. R., Clary, K. H., Cooke, R. G., Ranere, A. J. & Weiland, D. Preceramic maize in central panama: phytolith and pollen evidence. Am. Anthropol. 87, 871–878 (1985).

  59. 59.

    Bush, M. B., Piperno, D. R. & Colinvaux, P. A. A 6,000-year history of Amazonian maize cultivation. Nature 340, 303–305 (1989).

  60. 60.

    Haberzettl, T. et al. Lateglacial and Holocene wet–dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. Holocene 17, 297–310 (2007).

  61. 61.

    Kylander, M. E., Klaminder, J., Wohlfarth, B. & Löwemark, L. Geochemical responses to paleoclimatic changes in southern Sweden since the late glacial: the Hässeldala Port lake sediment record. J. Paleolimnol. 50, 57–70 (2013).

  62. 62.

    Jouve, G. et al. Microsedimentological characterization using image analysis and μ-XRF as indicators of sedimentary processes and climate changes during Lateglacial at Laguna Potrok Aike, Santa Cruz, Argentina. Quat. Sci. Rev. 71, 191–204 (2013).

  63. 63.

    Sulca, J., Takahashi, K., Espinoza, J. C., Vuille, M. & Lavado‐Casimiro, W. Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int. J. Climatol. 38, 420–435 (2018).

  64. 64.

    Schreiber, K. J. in Foundations of Power in the Prehispanic Andes, Vol. 14 (eds Vaughn, K. et al.) 131–150 (American Anthropological Association, 2005).

  65. 65.

    Watanabe, S. in Nuevas Perspectivas en la Organización Política Wari (eds Giersz, M. & Makowski, K.) 263–286 (Centro de Estudios Precolumbinos de la Univ. Varsovia, 2016).

  66. 66.

    Schjellerup, I. in Agricultural and Pastoral Landscapes in Pre-Industrial Society: Choices, Stability and Change, Vol. 3 (eds Retamero, F., Schjellerup, I. & Davies, A.) 187–200 (Oxbow Books, 2014).

  67. 67.

    von Hagen, A. in Andean Archaeology II: Art Landscape and Society (eds Isbell, W. & Silverman, H.) 137–156 (Kluwer, 2002).

  68. 68.

    von Hagen, A. & Guillén, S. Tombs with a view. Archaeology 51, 48–54 (1998).

  69. 69.

    Contreras, D. A. in The Archaeology of Human–Environment Interactions (ed. Contreras, D. A.) 17–36 (Routledge, 2016).

  70. 70.

    Goldberg, A., Mychajliw, A. M. & Hadly, E. A. Post-invasion demography of prehistoric humans in South America. Nature 532, 232 (2016).

  71. 71.

    McMichael, C. N. H. & Bush, M. B. Spatiotemporal patterns of pre-Columbian people in Amazonia. Quat. Res. 92, 53–69 (2019).

  72. 72.

    Bush, M. B., Correa‐Metrio, A., Woesik, R., Shadik, C. R. & McMichael, C. N. Human disturbance amplifies Amazonian El Niño–Southern Oscillation signal. Glob. Change Biol. 23, 3181–3192 (2017).

  73. 73.

    Bush, M. B. et al. A 6,900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev. 141, 52–64 (2016).

  74. 74.

    Bush, M. B. et al. A 17,000-year history of Andean climatic and vegetation change from Laguna de Chochos, Peru. J. Quat. Sci. 20, 703–714 (2005).

  75. 75.

    Heckenberger, M. et al. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 1214–1217 (2008).

  76. 76.

    McMichael, C. et al. Sparse pre-Columbian human habitation in western Amazonia. Science 336, 1429–1431 (2012).

  77. 77.

    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

  78. 78.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  79. 79.

    Hogg, A. G. et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 1889–1903 (2013).

  80. 80.

    Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. C 57, 399–418 (2008).

  81. 81.

    Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).

  82. 82.

    Richter, T. O. et al. The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. Geol. Soc. Lond. 267, 39–50 (2006).

  83. 83.

    Molloy, J. L. & Sieber, J. R. Classification of microheterogeneity in solid samples using µXRF. Anal. Bioanal. Chem. 392, 995–1001 (2008).

  84. 84.

    Oksanen, J. et al. vegan: Community Ecology Package. R version 2.9-9 (R Foundation for Statistical Computing, 2013).

  85. 85.

    Heiri, O., Lotter, A. F. & Lemcke, G. Loss-ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25, 101–110 (2001).

  86. 86.

    Matthews-Bird, F., Valencia, B. G., Church, W., Peterson, L. C. & Bush, M. A 2,000-year history of disturbance and recovery at a sacred site in Peru’s northeastern cloud forest. Holocene 27, 1707–1719 (2017).

  87. 87.

    Battarbee, R. W. in Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 527–570 (Wiley, 1986).

  88. 88.

    Lange Bertalot, H. Tropical Diatoms of South America I. Iconographia Diatomologica, Vol. 5 (Koeltz Scientific Books, 1998).

  89. 89.

    Lange Bertalot, H. Diatoms of the Andes From Venezuela to Patagonia/Tierra del Fuego, Vol. 9 (Koeltz Scientific Books, 2000).

  90. 90.

    Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spore 13, 615–621 (1971).

  91. 91.

    Faegri, K. & Iversen, J. Textbook of Pollen Analysis 4th edn, 328 (Wiley, 1989).

  92. 92.

    Bush, M. B. & Weng, C. Introducing a new (freeware) tool for palynology. J. Biogeogr. 34, 377–380 (2007).

  93. 93.

    Hooghiemstra, H. Vegetational and Climatic History of the High Plain of Bogota, Colombia. Dissertaci ones Botanicae 79 (J. Cramer, 1984).

  94. 94.

    Grimm, E. Tilia software v.1.7.16 (Illinois State Museum, 2011).

  95. 95.

    Juggins, S. C2 Version 1.5: Software for ecological and palaeoecological data analysis and visualisation (Newcastle University, 2007).

  96. 96.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

Download references

Acknowledgements

We are grateful to the community of Leymebamba for allowing us access to Lake Condores, and to archaeologists S. Guillén and A. von Hagen who have provided the foundational work on the mortuaries and Llaqtacocha. This work was funded by grants from the National Aeronautics and Space Administration (grant no. NNX14AD31G), the National Science Foundation (grant no. EAR1338694 and 1624207) and National Geographic Society (grant no. 8763-10) to M.B.B.

Author information

C.M.Å., F.M.-B., M.B., C.-J.F., L.C.P. and W.B.C. performed research. C.M.Å., F.M.-B., L.C.P. and M.B.B. analysed data. C.M.Å., F.M.-B., L.C.P., W.B.C., B.G.V. and M.B.B. wrote the paper. M.B.B. designed the research project. M.B.B. and B.G.V. conducted the field project.

Correspondence to Christine M. Åkesson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Age-depth model of sediments from Laguna de los Condores, Peru.

Age-depth model of sediments from Laguna de los Condores, Peru. The age-depth model was calibrated using 14C dates (Supplementary Table 1), Bacon77, and the IntCal13 calibration curve79.

Extended Data Fig. 2 CONISS zonation of the fossil pollen data from Laguna de los Condores contrasted with major use characterization of the site.

CONISS zonation of the fossil pollen data from Laguna de los Condores contrasted with major use characterization of the site.

Extended Data Fig. 3 Fossil diatom abundances (%) of Laguna de los Condores, Peru.

Fossil diatom abundances (%) of Laguna de los Condores, Peru86. Only taxa with a >5% total abundance are shown.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–3, Discussion and References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Åkesson, C.M., Matthews-Bird, F., Bitting, M. et al. 2,100 years of human adaptation to climate change in the High Andes. Nat Ecol Evol 4, 66–74 (2020). https://doi.org/10.1038/s41559-019-1056-2

Download citation