Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Social–environmental drivers inform strategic management of coral reefs in the Anthropocene


Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages—the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014–2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Indo-Pacific patterns of reef coral assemblages.
Fig. 2: Relationship between climate, social, environmental and methodology variables with coral abundance.
Fig. 3: Strategic management portfolio of protect, recover and transform for Indo-Pacific coral reefs.
Fig. 4: Indo-Pacific map of management strategies.
Fig. 5: Combinations of key social and environmental drivers that differentiate between reefs below and above 10% cover of framework corals.

Data availability

Data are available on request or directly from the data contributors. Contact details and information on the geographies covered by each data contributor are provided in Supplementary Table 8.

Code availability

All R code is available from


  1. 1.

    Norström, A. V. et al. Guiding coral reef futures in the Anthropocene. Front. Ecol. Environ. 14, 490–498 (2016).

    Article  Google Scholar 

  2. 2.

    Williams, G. J. et al. Coral reef ecology in the Anthropocene. Funct. Ecol. 33, 1014–1022 (2019).

    Article  Google Scholar 

  3. 3.

    Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).

    Article  Google Scholar 

  4. 4.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    Article  CAS  Google Scholar 

  5. 5.

    Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018).

    Article  CAS  Google Scholar 

  6. 6.

    Guest, J. R. et al. A framework for identifying and characterising coral reef “oases” against a backdrop of degradation. J. Appl. Ecol. 55, 2865–2875 (2018).

    Article  Google Scholar 

  7. 7.

    Denis, V., Ribas-Deulofeu, L., Sturaro, N., Kuo, C.-Y. & Chen, C. A. A functional approach to the structural complexity of coral assemblages based on colony morphological features. Sci. Rep. 7, 9849 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    González-Barrios, F. J. & Álvarez-Filip, L. A framework for measuring coral species-specific contribution to reef functioning in the Caribbean. Ecol. Indic. 95, 877–886 (2018).

    Article  Google Scholar 

  9. 9.

    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).

    Article  Google Scholar 

  10. 10.

    Perry, C. T. & Alvarez-Filip, L. Changing geo-ecological functions of coral reefs in the Anthropocene. Funct. Ecol. 33, 976–988 (2019).

    Google Scholar 

  11. 11.

    Wilson, S. K., Robinson, J. P. W., Chong-Seng, K., Robinson, J. & Graham, N. A. J. Boom and bust of keystone structure on coral reefs. Coral Reefs (2019).

  12. 12.

    Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36, 561–575 (2017).

    Article  Google Scholar 

  13. 13.

    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Alvarez-Filip, L., Carricart-Ganivet, J. P., Horta-Puga, G. & Iglesias-Prieto, R. Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Sci. Rep. 3, 3486 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Darling, E. S., McClanahan, T. R. & Côté, I. M. Life histories predict coral community disassembly under multiple stressors. Glob. Change Biol. 19, 1930–1940 (2013).

    Article  Google Scholar 

  16. 16.

    Graham, N. A. J., Chong-Seng, K. M., Huchery, C., Januchowski-Hartley, F. A. & Nash, K. L. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia. PLoS ONE 9, e101204 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Sommer, B., Harrison, P. L., Beger, M. & Pandolfi, J. M. Trait-mediated environmental filtering drives assembly at biogeographic transition zones. Ecology 95, 1000–1009 (2014).

    Article  Google Scholar 

  18. 18.

    Kayal, M. et al. Predicting coral community recovery using multi-species population dynamics models. Ecol. Lett. 21, 1790–1799 (2018).

    Article  Google Scholar 

  19. 19.

    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    Kittinger, J. N., Finkbeiner, E. M., Glazier, E. W. & Crowder, L. B. Human dimensions of coral reef social–ecological systems. Ecol. Soc. 17, 17 (2012).

    Article  Google Scholar 

  21. 21.

    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Green, D. H., Edmunds, P. J. & Carpenter, R. C. Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar. Ecol. Prog. Ser. 359, 1–10 (2008).

    Article  Google Scholar 

  24. 24.

    Montaggioni, L. F. History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth Sci. Rev. 71, 1–75 (2005).

    Article  Google Scholar 

  25. 25.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J. & Baum, J. K. Global patterns and impacts of El Niño events on coral reefs: a meta-analysis. PLoS ONE 13, e0190957 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Januchowski-Hartley, F. A., Graham, N. A. J., Wilson, S. K., Jennings, S. & Perry, C. T. Drivers and predictions of coral reef carbonate budget trajectories. Proc. R. Soc. B 284, 20162533 (2017).

    Article  PubMed  Google Scholar 

  28. 28.

    McManus, J. W., Reyes, B. R. & Nañola, C. L. Effects of some destructive fishing methods on coral cover and potential rates of recovery. Environ. Manag. 21, 69–78 (1997).

    Article  CAS  Google Scholar 

  29. 29.

    Pollock, F. J. et al. Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. PLoS ONE 9, e102498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Dixson, D. L., Abrego, D. & Hay, M. E. Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science 345, 892–897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Costa, O. S., Leão, Z. M. A. N., Nimmo, M. & Attrill, M. J. in Island, Ocean and Deep-Sea Biology (eds Jones, M. B., Azevedo, J. M. N., Neto, A. I., Costa, A. C. & Martins, A. M. F.) 307–315 (Springer, 2000).

  32. 32.

    Cinner, J. How behavioral science can help conservation. Science 362, 889–890 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected areas improve reef resilience? Annu. Rev. Mar. Sci. 11, 307–334 (2019).

    Article  Google Scholar 

  34. 34.

    Strain, E. M. A. et al. A global assessment of the direct and indirect benefits of marine protected areas for coral reef conservation. Divers. Distrib. 25, 9–20 (2019).

    Article  Google Scholar 

  35. 35.

    Madin, J. S. & Connolly, S. R. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444, 477–480 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Robinson, J. P. W. et al. Environmental conditions and herbivore biomass determine coral reef benthic community composition: implications for quantitative baselines. Coral Reefs 37, 1157–1168 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Edmunds, P. et al. Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar. Ecol. Prog. Ser. 608, 297–306 (2019).

    Article  Google Scholar 

  38. 38.

    Zawada, K. J. A., Madin, J. S., Baird, A. H., Bridge, T. C. L. & Dornelas, M. Morphological traits can track coral reef responses to the Anthropocene. Funct. Ecol. 33, 962–975 (2019).

    Google Scholar 

  39. 39.

    Skirving, W. J. et al. The relentless march of mass coral bleaching: a global perspective of changing heat stress. Coral Reefs (2019).

  40. 40.

    Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4, 1402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Perry, C. T. et al. Remote coral reefs can sustain high growth potential and may match future sea-level trends. Sci. Rep. 5, 18289 (2016).

    Article  CAS  Google Scholar 

  42. 42.

    Harvey, B. J., Nash, K. L., Blanchard, J. L. & Edwards, D. P. Ecosystem-based management of coral reefs under climate change.Ecol. Evol. 8, 6354–6368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change.Conserv. Lett. 11, e12587 (2018).

    Article  Google Scholar 

  44. 44.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    Article  CAS  Google Scholar 

  45. 45.

    Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 39666 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Fox, H. E. et al. Rebuilding coral reefs: success (and failure) 16 years after low‐cost, low‐tech restoration. Restor. Ecol. (2019).

  47. 47.

    Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).

    Article  Google Scholar 

  48. 48.

    Sen, A. The ends and means of sustainability. J. Hum. Dev. Capab. 14, 6–20 (2013).

    Article  Google Scholar 

  49. 49.

    Bellwood, D. R., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct. Ecol. 33, 948–961 (2019).

    Google Scholar 

  50. 50.

    Goatley, C. H. R. & Bellwood, D. R. The roles of dimensionality, canopies and complexity in ecosystem monitoring. PLoS ONE 6, e27307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Keith, S. A., Baird, A. H., Hughes, T. P., Madin, J. S. & Connolly, S. R. Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution. Proc. R. Soc. B 280, 20130818 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. R package version 1.1-4 (2017).

  53. 53.

    Burke, L. M., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resources Institute, 2011).

  54. 54.

    Zinke, J. et al. Gradients of disturbance and environmental conditions shape coral community structure for south-eastern Indian Ocean reefs. Divers. Distrib. 24, 605–620 (2018).

    Article  Google Scholar 

  55. 55.

    Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data 3, 160017 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ferrari, S. & Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 31, 799–815 (2004).

    Article  Google Scholar 

  57. 57.

    Gelman, A. et al. Bayesian Data Analysis (Chapman and Hall/CRC, 2013).

  58. 58.

    Gelman, A., Goodrich, B., Gabry, J. & Ali, I. R-Squared for Bayesian Regression Models (2017);

  59. 59.

    Stan Development Team Stan Modeling Language Users Guide and Reference Manual Version 2.18.0 (2018).

  60. 60.

    Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

  61. 61.

    R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  62. 62.

    Lamy, T., Galzin, R., Kulbicki, M., Lison de Loma, T. & Claudet, J. Three decades of recurrent declines and recoveries in corals belie ongoing change in fish assemblages. Coral Reefs 35, 293–302 (2016).

    Article  Google Scholar 

  63. 63.

    Beldade, R., Mills, S. C., Claudet, J. & Côté, I. M. More coral, more fish? Contrasting snapshots from a remote Pacific atoll. PeerJ 3, e745 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Harborne, A. R. et al. Modelling and mapping regional-scale patterns of fishing impact and fish stocks to support coral-reef management in Micronesia. Divers. Distrib. 24, 1729–1743 (2018).

    Article  Google Scholar 

  65. 65.

    Mumby, P. J. Embracing a world of subtlety and nuance on coral reefs. Coral Reefs 36, 1003–1011 (2017).

    Article  Google Scholar 

Download references


All data contributors thank their monitoring partners and funders (see Supplementary Acknowledgements). We thank A. Baird, E. Buthung, P. Chabanet, Y. Chancerelle, D. Harvell, A. Heyward, P. Jokiel, R. Komeno, R. Lawton, S. Maxin, M. Pratchett, B. Randriamanantsoa, C. Rodney, E. Rudi, C. Russo, S. Tasidjawa, B. Vargas-Angel, I. Williams, B. Willis and J. Zavatra for data collection. We thank S. Anderson, K. Fisher and H. Beyer for assistance with analysis and data extraction. Major funding for this work was provided via a David H. Smith Conservation Research Fellowship from the Cedar Tree Foundation, a Banting Postdoctoral Fellowship from the Natural Sciences and Engineering Research Council of Canada, and the John D. and Catherine T. MacArthur Foundation through grants to the Wildlife Conservation Society. The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the author(s) and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration or the Department of Commerce.

Author information




E.S.D. envisioned and led the project, performed all of the analyses, secured funding and wrote the manuscript. T.R.M., J.M., G.G.G., N.A.J.G., F.J.-H., J.E.C., C.M., C.C.H., M.-J.F., M. Krkosek and D.M. contributed to the conceptual ideas, design, analysis, design and writing. All other authors contributed data, and edited and approved the manuscript.

Corresponding author

Correspondence to Emily S. Darling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary acknowledgements, methods, Figs. 1–7 and Tables 1–8.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Darling, E.S., McClanahan, T.R., Maina, J. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat Ecol Evol 3, 1341–1350 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing