Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental evidence of frequency-dependent selection on group behaviour

This article has been updated

Abstract

Evolutionary ecologists often seek to identify the mechanisms maintaining intraspecific variation. In social animals, whole groups can exhibit between-group differences in their collective traits. We examined whether negative frequency-dependent selection (that is, a rare-type advantage) could help to maintain between-group variation. We engineered neighbourhoods of social spider colonies bearing bold or shy foraging phenotypes and monitored their fecundity in situ. We found that bold colonies enjoyed a rare-type advantage that is lost as the frequency of bold colonies in a neighbourhood increases. The success of shy colonies was not frequency dependent. These dynamics seem to be driven by a foraging advantage of bold colonies that is lost in bold neighbourhoods because prey become scarce, and shy colonies perform better than bold colonies under low-resource conditions. Thus, to understand selection on collective traits, it is insufficient to examine groups in isolation. The phenotypic environment in which groups reside and compete must also be considered.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Capture web size and attacker deployment across colonies.
Fig. 2: Egg case production and the frequency of bold colonies.
Fig. 3: The relationship between the number of prey carcasses and egg cases produced by colonies, and survival curves.

Data availability

The data used in this study are available from Dryad (https://doi.org/10.5061/dryad.m592p4g). Raw data are depicted in Fig. 3b,c and Supplementary Figs. 16.

Change history

  • 18 February 2020

    Editorial Note: Readers are alerted that the reliability of some of the data presented in this Article is currently in question and is being investigated by the editors. A further editorial response will follow when the issues are resolved.

References

  1. Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: a meta-analysis. Anim. Behav. 77, 771–783 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).

    Article  PubMed  Google Scholar 

  3. Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jandt, J. M. et al. Behavioral syndromes and social insects: multiple levels of personality. Biol. Rev. 89, 48–67 (2014).

    Article  PubMed  Google Scholar 

  5. Bengston, S. & Jandt, J. M. The development of collective personality: the ontogenetic drivers of behavioral variation across groups. Front. Ecol. Evol. 2, 81 (2014).

    Article  Google Scholar 

  6. Brown, C. R., Brown, M. B., Roche, E. A., O’Brien, V. A. & Page, C. E. Fluctuating survival selection explains variation in avian group size. Proc. Natl Acad. Sci. USA 113, 5113–5118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ingram, K. K., Pilko, A., Heer, J. & Gordon, D. M. Colony life history and lifetime reproductive success of red harvester ant colonies. J. Anim. Ecol. 82, 540–550 (2013).

    Article  PubMed  Google Scholar 

  8. Gordon, D. M. The rewards of restraint in the collective regulation of foraging by harvester ant colonies. Nature 498, 91–93 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Wray, M. K., Mattila, H. R. & Seeley, T. D. Collective personalities in honeybee colonies are linked to colony fitness. Anim. Behav. 81, 559–568 (2011).

    Article  Google Scholar 

  10. Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).

    Article  Google Scholar 

  11. Sinervo, B. & Calsbeek, R. The developmental, physiological, neural, and genetical causes and consequences of frequency-dependent selection in the wild. Annu. Rev. Ecol. Evol. Syst. 37, 581–610 (2006).

    Article  Google Scholar 

  12. Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, 1982).

  13. Sinervo, B. & Lively, C. M. The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380, 240–243 (1996).

    Article  CAS  Google Scholar 

  14. Gigord, L. D. B., Macnair, M. R. & Smithson, A. Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soò. Proc. Natl Acad. Sci. USA 98, 6253–6255 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. KeiserC. N. & PruittJ. N. Personality composition is more important than group size in determining collective foraging behaviour in the wild. Proc. R. Soc. B 281, 20141424 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wright, C. M., Keiser, C. N. & Pruitt, J. N. Colony personality composition alters colony-level plasticity and magnitude of defensive behaviour in a social spider. Anim. Behav. 115, 175–183 (2016).

    Article  Google Scholar 

  17. Pruitt, J. N. et al. Selection for collective aggressiveness favors social susceptibility in social spiders. Curr. Biol. 28, 100–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Smith, D., van Rijn, S., Henschel, J., Bilde, T. & Lubin, Y. Amplified fragment length polymorphism fingerprints support limited gene flow among social spider populations. Biol. J. Linn. Soc. 97, 235–246 (2009).

    Article  Google Scholar 

  19. Modlmeier, A. P. et al. Persistent social interactions beget more pronounced personalities in a desert-dwelling social spider. Biol. Lett. 10, 20140419 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hunt, E. R. et al. Social interactions shape individual and collective personality in social spiders. Proc. R. Soc. B 285, 30185649 (2018).

    Article  Google Scholar 

  21. Pruitt, J. N. & Pinter-Wollman, N. The legacy effects of keystone individuals on collective behaviour scale to how long they remain within a group. Proc. R. Soc. B 282, 89–96 (2015).

    Article  Google Scholar 

  22. Johannesen, J., Hennig, A., Dommermuth, B. & Schneider, J. M. Mitochondrial DNA distributions indicate colony propagation by single matri-lineages in the social spider Stegodyphus dumicola (Eresidae). Biol. J. Linn. Soc. 76, 591–600 (2002).

    Article  Google Scholar 

  23. Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging - selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).

    Article  Google Scholar 

  24. Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).

  25. Rueffler, C., Van Dooren, T. J. M., Leimar, O. & Abrams, P. A. Disruptive selection and then what? Trends Ecol. Evol. 21, 238–245 (2006).

    Article  PubMed  Google Scholar 

  26. Lichtenstein, J. L. L. et al. Participation in cooperative prey capture and the benefits gained from it are associated with individual personality. Curr. Zool. 63, 561–567 (2017).

    PubMed  Google Scholar 

  27. Yip, E. C., Powers, K. S. & Aviles, L. Cooperative capture of large prey solves scaling challenge faced by spider societies. Proc. Natl Acad. Sci. USA 105, 11818–11822 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Trubl, P., Blackmore, V. & Johnson, J. C. Wasteful killing in urban black widows: gluttony in response to food abundance. Ethology 117, 236–245 (2011).

    Article  Google Scholar 

  29. Riechert, S. E. & Maupin, J. L. Spider effects on prey: tests for superfluous killing in five web-builders. In Proceedings of the 17th European Colloquium of Arachnology (ed. Selden, P. A.) 203–210 (British Arachnological Society, 1997).

  30. Maupin, J. L. & Riechert, S. E. Superfluous killing in spiders: a consequence of adaptation to food-limited environments? Behav. Ecol. 12, 569–576 (2001).

    Article  Google Scholar 

  31. Jolles, J. W., Laskowski K. L., Boogert N. J. & Manica, A. Repeatable group differences in the collective behaviour of stickleback shoals across ecological contexts. Proc. R. Soc. B 285, 29436496 (2018).

    Article  Google Scholar 

  32. Farine, D. R., Aplin, L. M., Garroway, C. J., Mann, R. P. & Sheldon, B. C. Collective decision making and social interaction rules in mixed-species flocks of songbirds. Anim. Behav. 95, 173–182 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jolles, J. W., Boogert, N. J., Sridhar, V. H., Couzin, I. D. & Manica, A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr. Biol. 27, 2862 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shaffer, Z. et al. The foundress’s dilemma: group selection for cooperation among queens of the harvester ant, Pogonomyrmex californicus. Sci. Rep. 6, 29828 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haney, B. R. & Fewell, J. H. Ecological drivers and reproductive consequences of non-kin cooperation by ant queens. Oecologia 187, 643–655 (2018).

    Article  PubMed  Google Scholar 

  36. Pruitt, J. N. & Goodnight, C. J. Site-specific group selection drives locally adapted colony compositions. Nature 28, 1248–1256 (2014).

    Google Scholar 

  37. Keiser, C. N., Jones, D. K., Modlmeier, A. P. & Pruitt, J. N. Exploring the effects of individual traits and within-colony variation on task differentiation and collective behavior in a desert social spider. Behav. Ecol. Sociobiol. 68, 839–850 (2014).

    Article  Google Scholar 

  38. Laskowski, K. L., Montiglio, P. O. & Pruitt, J. N. Individual and group performance suffers from social niche disruption. Am. Nat. 187, 776–785 (2016).

    Article  PubMed  Google Scholar 

  39. Laskowski K. L. & Pruitt J. N. Evidence of social niche construction: persistent and repeated social interactions generate stronger personalities in a social spider. Proc. R. Soc. B 281, 24671972 (2014).

    Article  Google Scholar 

  40. Wright, C. M., Keiser, C. N. & Pruitt, J. N. Personality and morphology shape task participation, collective foraging and escape behaviour in the social spider Stegodyphus dumicola. Anim. Behav. 105, 47–54 (2015).

    Article  Google Scholar 

  41. Keiser, C. N., Wright, C. M. & Pruitt, J. N. Increased bacterial load can reduce or negate the effects of keystone individuals on group collective behaviour. Anim. Behav. 114, 211–218 (2016).

    Article  Google Scholar 

  42. Keiser C. N., Howell K. A., Pinter-Wollman N. & Pruitt J. N . Personality composition alters the transmission of cuticular bacteria in social groups. Biol. Lett. 12, 27381885 (2016).

    Article  Google Scholar 

  43. Keiser, C. N. et al. Individual differences in boldness influence patterns of social interactions and the transmission of cuticular bacteria among group-mates. Proc. R. Soc. B 283, 27097926 (2016).

    Article  CAS  Google Scholar 

  44. Wickler, W. & Seibt, U. Pedogenetic sociogenesis via the sibling-route and some consequences for Stegodyphus spiders. Ethology 95, 1–18 (1993).

    Article  Google Scholar 

  45. Modlmeier, A. P. et al. Persistent social interactions beget more pronounced personalities in a desert-dwelling social spider. Biol. Lett. 10, 2014 (2014).

    Article  Google Scholar 

  46. Grinsted, L., Pruitt, J. N., Settepani, V. & Bilde, T. Individual personalities shape task differentiation in a social spider. Proc. R. Soc. B 280, 23902907 (2013).

    Article  Google Scholar 

  47. Pruitt, J. N., Grinsted, L. & Settepani, V. Linking levels of personality: personalities of the ‘average’ and ‘most extreme’ group members predict colony-level personality. Anim. Behav. 86, 391–399 (2013).

    Article  Google Scholar 

  48. Christenson, T. E. Behavior of colonial and solitary spiders of the theridiid species Anelosimus eximius. Anim. Behav. 32, 725 (1984).

    Article  Google Scholar 

  49. Kullmann, E. J. Evolution of social behavior in spiders (Araneae; Eresidae and Theridiidae). Am. Zool. 12, 419 (1972).

    Article  Google Scholar 

  50. Seibt, U. & Wickler, W. Bionomics and social structure of ‘family spiders’ of the genus Stegodyphus, with special reference to the African species S. Dumicola and S. Mimosarum (Araneidae, Eresidae). Verh. Naturwiss. Ver. Hamb. 30, 255–303 (1988).

    Google Scholar 

Download references

Acknowledgements

We thank A. Santoro, E. Eliason, H. Moeller, D. Fisher, A. Little and A. Radford for their help in improving previous versions of this manuscript. Funding was provided by NSF IOS grant numbers 1455895 to J.N.P., 1456010 to N.P.W., NIH GM115509 to N.P.W. and J.N.P., and the Tricounsel Agencies of Canada in association with a Canada 150 Research Chair Professorship to J.N.P.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study design, data collection, statistical analysis, and composing of the manuscript. All authors were included in all aspects of the pipeline.

Corresponding author

Correspondence to Jonathan N. Pruitt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figures 1–6 and Supplementary Statistical Outputs

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pruitt, J.N., McEwen, B.L., Cassidy, S.T. et al. Experimental evidence of frequency-dependent selection on group behaviour. Nat Ecol Evol 3, 702–707 (2019). https://doi.org/10.1038/s41559-019-0852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-0852-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing