Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Food web rewiring in a changing world

Abstract

Climate change is asymmetrically altering environmental conditions in space, from local to global scales, creating novel heterogeneity. Here, we argue that this novel heterogeneity will drive mobile generalist consumer species to rapidly respond through their behaviour in ways that broadly and predictably reorganize — or rewire — food webs. We use existing theory and data from diverse ecosystems to show that the rapid behavioural responses of generalists to climate change rewire food webs in two distinct and critical ways. First, mobile generalist species are redistributing into systems where they were previously absent and foraging on new prey, resulting in topological rewiring — a change in the patterning of food webs due to the addition or loss of connections. Second, mobile generalist species, which navigate between habitats and ecosystems to forage, will shift their relative use of differentially altered habitats and ecosystems, causing interaction strength rewiring — changes that reroute energy and carbon flows through existing food web connections and alter the food web’s interaction strengths. We then show that many species with shared traits can exhibit unified aggregate behavioural responses to climate change, which may allow us to understand the rewiring of whole food webs. We end by arguing that generalists’ responses present a powerful and underutilized approach to understanding and predicting the consequences of climate change and may serve as much-needed early warning signals for monitoring the looming impacts of global climate change on entire ecosystems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

Data availability

The data used to produce Figs. 1 and 3 can be found online at https://doi.org/10.5281/zenodo.1158733.

References

  1. 1.

    Blanchard, J. L. A. A rewired food web. Nature 527, 7–8 (2015).

    Google Scholar 

  2. 2.

    Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of Arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B 282, 20151546 (2015).

    PubMed  Google Scholar 

  3. 3.

    Kortsch, S. et al. Climate-driven regime shifts in Arctic marine benthos. Proc. Natl Acad. Sci. USA 109, 14052–14057 (2012).

    CAS  PubMed  Google Scholar 

  4. 4.

    Harmon, J. P. & Barton, B. T. On their best behavior: how animal behavior can help determine the combined effects of species interactions and climate change. Ann. NY Acad. Sci. 1297, 139–147 (2013).

    PubMed  Google Scholar 

  5. 5.

    Knowlton, J. L. & Graham, C. H. Using behavioral landscape ecology to predict species’ responses to land-use and climate change. Biol. Conserv. 143, 1342–1354 (2010).

    Google Scholar 

  6. 6.

    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).

    CAS  PubMed  Google Scholar 

  7. 7.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    CAS  PubMed  Google Scholar 

  8. 8.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS  PubMed  Google Scholar 

  9. 9.

    McCann, K. S. & Rooney, N. The more food webs change, the more they stay the same. Phil. Trans. R. Soc. B 364, 1789–1801 (2009).

    PubMed  Google Scholar 

  10. 10.

    Rooney, N., McCann, K. S. & Moore, J. C. A landscape theory for food web architecture. Ecol. Lett. 11, 867–881 (2008).

    PubMed  Google Scholar 

  11. 11.

    Schindler, D. E. Warmer climate squeezes aquatic predators out of their preferred habitat. Proc. Natl Acad. Sci. USA 114, 9764–9765 (2017).

    CAS  PubMed  Google Scholar 

  12. 12.

    Schmitz, O. J., Beckerman, A. P. & O’Brien, K. M. Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78, 1388–1399 (1997).

    Google Scholar 

  13. 13.

    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).

    CAS  PubMed  Google Scholar 

  14. 14.

    Allen, C. & Holling, C. S. Discontinuities in Ecosystems and Other Complex Systems (Columbia Univ. Press, New York, 2008).

  15. 15.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  PubMed  Google Scholar 

  16. 16.

    Butler, S. J., Vickery, J. A. & Norris, K. Farmland biodiversity and the footprint of agriculture. Science 315, 381–384 (2007).

    CAS  Google Scholar 

  17. 17.

    Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. (eds) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, UK, 2012).

  18. 18.

    Flato, G. M. & Boer, G. J. Warming asymmetry in climate change simulations. Geophys. Res. Lett. 28, 195–198 (2001).

    Google Scholar 

  19. 19.

    Xu, Y. & Ramanathan, V. Latitudinally asymmetric response of global surface temperature: implications for regional climate change. Geophys. Res. Lett. 39, L13706 (2012).

    Google Scholar 

  20. 20.

    Chou, C., Tu, J.-Y. Y. & Tan, P.-H. H. Asymmetry of tropical precipitation change under global warming. Geophys. Res. Lett. 34, L17708 (2007).

    Google Scholar 

  21. 21.

    Trenberth, K. E. & Hoar, T. J. El Niño and climate change. Geophys. Res. Lett. 24, 3057–3060 (1997).

    Google Scholar 

  22. 22.

    Marshall, J. et al. The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Phil. Trans. R. Soc. A 372, 20130040 (2014).

    PubMed  Google Scholar 

  23. 23.

    Stouffer, R. J., Manabe, S. & Bryan, K. Interhemispheric asymmetry in climate response to a gradual increase of atmospheric C02. Nature 342, 660–662 (1989).

    Google Scholar 

  24. 24.

    Sutton, R. T., Dong, B. & Gregory, J. M. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett. 34, L02701 (2007).

    Google Scholar 

  25. 25.

    Karl, T. R. et al. Global warming: evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 18, 2253–2256 (1991).

    Google Scholar 

  26. 26.

    Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).

    Google Scholar 

  28. 28.

    Kaarlejärvi, E., Eskelinen, A. & Olofsson, J. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains. Nat. Commun. 8, 419 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. (Springer, Basel, 2012).

  30. 30.

    Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).

    CAS  PubMed  Google Scholar 

  31. 31.

    Guzzo, M. M., Blanchfield, P. J. & Rennie, M. D. Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator. Proc. Natl. Acad. Sci. USA 114, 9912–9917 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Tunney, T. D., McCann, K. S., Lester, N. P. & Shuter, B. J. Effects of differential habitat warming on complex communities. Proc. Natl Acad. Sci. USA 111, 8077–8082 (2014).

    CAS  PubMed  Google Scholar 

  33. 33.

    Schmitz, O. J. & Barton, B. T. Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol. Control 75, 87–96 (2014).

    Google Scholar 

  34. 34.

    Alofs, K. M., Jackson, D. A. & Lester, N. P. Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Divers. Distrib. 20, 123–136 (2014).

    Google Scholar 

  35. 35.

    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

    CAS  Google Scholar 

  36. 36.

    Menendez, R. et al. Species richness changes lag behind climate change. Proc. R. Soc. B 273, 1465–1470 (2006).

    PubMed  Google Scholar 

  37. 37.

    Wilson, R. J., Gutiérrez, D., Gutiérrez, J. & Monserrat, V. J. An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob. Change Biol. 13, 1873–1887 (2007).

    Google Scholar 

  38. 38.

    Kerr, J. T. et al. Climate change impacts on bumblebees across continents. Science 349, 177–180 (2015).

    CAS  PubMed  Google Scholar 

  39. 39.

    Lurgi, M., López, B. C. & Montoya, J. M. Climate change impacts on body size and food web structure on mountain ecosystems. Phil. Trans. R. Soc. B 367, 3050–3057 (2012).

    PubMed  Google Scholar 

  40. 40.

    Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48, 25–48 (2017).

    Google Scholar 

  41. 41.

    Travis, J. M. J. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc. R. Soc. B 270, 467–473 (2003).

    CAS  PubMed  Google Scholar 

  42. 42.

    Sax, D. F., Gaines, S. D. & Brown, J. H. Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. Am. Nat. 160, 766–783 (2002).

    PubMed  Google Scholar 

  43. 43.

    Pires, M. M. Rewilding ecological communities and rewiring ecological networks. Perspect. Ecol. Conserv. 15, 257–265 (2017).

    Google Scholar 

  44. 44.

    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

    PubMed  Google Scholar 

  45. 45.

    Lu, X. et al. Drought rewires the cores of food webs. Nat. Clim. Change 6, 875–878 (2016).

    Google Scholar 

  46. 46.

    May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, Princeton, NJ, USA, 1973).

  47. 47.

    Yodzis, P. The connectance of real ecosystems. Nature 284, 544–545 (1980).

    Google Scholar 

  48. 48.

    Pimm, S. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Google Scholar 

  49. 49.

    Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281, 20140846 (2014).

    PubMed  Google Scholar 

  50. 50.

    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS  PubMed  Google Scholar 

  51. 51.

    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    CAS  Google Scholar 

  52. 52.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    McCann, K. S. Food Webs (Princeton Univ. Press, Princeton, NJ, USA, 2011).

  54. 54.

    Neutel, A.-M. et al. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002).

    CAS  PubMed  Google Scholar 

  55. 55.

    Yodzis, P. The stability of real ecosystems. Nature 289, 674–676 (1981).

    Google Scholar 

  56. 56.

    Lurgi, M., Lopez, B. C. & Montoya, J. M. Novel communities from climate change. Phil. Trans. R. Soc. B 367, 2913–2922 (2012).

    PubMed  Google Scholar 

  57. 57.

    Humphries, M. M., Umbanhowar, J. & McCann, K. S. Bioenergetic prediction of climate change impacts on northern mammals. Integr. Comp. Biol. 44, 152–162 (2004).

    PubMed  Google Scholar 

  58. 58.

    Velarde, E., Ezcurra, E. & Anderson, D. W. Seabird diets provide early warning of sardine fishery declines in the Gulf of California. Sci. Rep. 3, 1332 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Cherry, M. J. & Barton, B. T. Effects of wind on predator-prey interactions. Food Webs 13, 92–97 (2017).

    Google Scholar 

  60. 60.

    Barton, B. T., Beckerman, A. P. & Schmitz, O. J. Climate warming strengthens indirect interactions in an old-field food web. Ecology 90, 2346–2351 (2009).

    PubMed  Google Scholar 

  61. 61.

    Barton, B. T. Local adaptation to temperature conserves top-down control in a grassland food web. Proc. R. Soc. B 278, 3102–3107 (2011).

    PubMed  Google Scholar 

  62. 62.

    Yurkowski, D. J. et al. Temporal shifts in intraguild predation pressure between beluga whales and Greenland halibut in a changing Arctic. Biol. Lett. 13, 20170433 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Prop, J. et al. Climate change and the increasing impact of polar bears on bird populations. Front. Ecol. Evol. 3, 33 (2015).

    Google Scholar 

  64. 64.

    Hamilton, C. D., Kovacs, K. M., Ims, R. A., Aars, J. & Lydersen, C. An Arctic predator–prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals. J. Anim. Ecol. 86, 1054–1064 (2017).

    PubMed  Google Scholar 

  65. 65.

    Smith, P. A., Elliott, K. H., Gaston, A. J. & Gilchrist, H. G. Has early ice clearance increased predation on breeding birds by polar bears? Polar Biol. 33, 1149–1153 (2010).

    Google Scholar 

  66. 66.

    Dey, C. J. et al. Increasing nest predation will be insufficient to maintain polar bear body condition in the face of sea ice loss. Glob. Change Biol. 23, 1821–1831 (2017).

    Google Scholar 

  67. 67.

    Robinson, R. A. et al. Travelling through a warming world: climate change and migratory species. Endanger. Species Res. 7, 87–99 (2009).

    Google Scholar 

  68. 68.

    Deacy, W. W. et al. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon. Proc. Natl Acad. Sci. USA 114, 10432–10437 (2017).

    CAS  PubMed  Google Scholar 

  69. 69.

    VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).

    Google Scholar 

  70. 70.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  PubMed  Google Scholar 

  71. 71.

    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).

    CAS  PubMed  Google Scholar 

  72. 72.

    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    PubMed  Google Scholar 

  73. 73.

    Peters, R. H. The Ecological Implications of Body Size (Cambridge Studies in Ecology, Cambridge Univ. Press, Cambridge, UK, 1983).

  74. 74.

    Sandstrom, S., Rawson, M. & Lester, N. Manual of Instructions for Broad-Scale Fish Community Monitoring Using North American (NA1) and Ontario Small Mesh (ON2) Gillnets (Queen’s Printer for Ontario, 2013).

  75. 75.

    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

    Google Scholar 

  76. 76.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    PubMed  Google Scholar 

  77. 77.

    Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Phil. Trans. R. Soc. B 370, 20130269 (2014).

    Google Scholar 

  78. 78.

    Overpeck, J. et al. Arctic environment change of the last four centuries. Science 278, 1251–1257 (1997).

    CAS  Google Scholar 

  79. 79.

    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

    Google Scholar 

  80. 80.

    Vander Zanden, M. J., Casselman, J. M. & Rasmussen, J. B. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467 (1999).

    Google Scholar 

  81. 81.

    Rooney, N. & McCann, K. S. Integrating food web diversity, structure and stability. Trends Ecol. Evol. 27, 40–45 (2012).

    PubMed  Google Scholar 

  82. 82.

    Cassman, K. G. et al. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA 96, 5952–5959 (1999).

    CAS  PubMed  Google Scholar 

  83. 83.

    Fedoroff, N. V. et al. Radically rethinking agriculture for the 21st century. Science 327, 833–834 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    CAS  PubMed  Google Scholar 

  85. 85.

    Eldredge, N. Life in the Balance: Humanity and the Biodiversity Crisis (Princeton Univ. Press, 2000).

  86. 86.

    Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).

    CAS  Google Scholar 

  87. 87.

    Gilljam, D., Curtsdotter, A. & Ebenman, B. Adaptive rewiring aggravates the effects of species loss in ecosystems. Nat. Commun. 6, 8412 (2015).

    CAS  PubMed  Google Scholar 

  88. 88.

    Pimm, S. L. & Lawton, J. H. Are food webs divided into compartments? J. Anim. Ecol. 49, 879–898 (1980).

    Google Scholar 

  89. 89.

    Moore, J. C. & Hunt, W. H. Resource compartmentation and the stability of real ecosystems. Nature 333, 261–263 (1988).

    Google Scholar 

  90. 90.

    Wootton, K. L. & Stouffer, D. B. Many weak interactions and few strong; food-web feasibility depends on the combination of the strength of species’ interactions and their correct arrangement. Theor. Ecol. 9, 185–195 (2016).

    Google Scholar 

  91. 91.

    McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).

    CAS  PubMed  Google Scholar 

  92. 92.

    Gilbert, B. et al. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17, 902–914 (2014).

    PubMed  Google Scholar 

  93. 93.

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    CAS  Google Scholar 

  94. 94.

    Boettiger, C., Ross, N. & Hastings, A. Early warning signals: the charted and uncharted territories. Theor. Ecol. 6, 255–264 (2013).

    Google Scholar 

  95. 95.

    Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).

    CAS  PubMed  Google Scholar 

  96. 96.

    Yodzis, P. & Innes, S. Body size and consumer-resource dynamics. Am. Nat. 139, 1151–1175 (1992).

    Google Scholar 

  97. 97.

    Kéfi, S. et al. Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9, 10–13 (2014).

    Google Scholar 

  98. 98.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    Google Scholar 

  99. 99.

    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    CAS  PubMed  Google Scholar 

  100. 100.

    McMeans, B. C. et al. The adaptive capacity of lake food webs: from individuals to ecosystems. Ecol. Monogr. 86, 4–19 (2016).

    Google Scholar 

  101. 101.

    Aspillaga, E. et al. Thermal stratification drives movement of a coastal apex predator. Sci. Rep. 7, 526 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Sato, C. F. & Lindenmayer, D. B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 11, e12348 (2017).

    Google Scholar 

  103. 103.

    GISS Surface Temperature Analysis (GISTEMP) (NASA Goddard Institute for Space Studies, 2018); https://data.giss.nasa.gov/gistemp/

  104. 104.

    Hansen, J. et al. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Google Scholar 

  105. 105.

    Barton, B. T. & Schmitz, O. J. Experimental warming transforms multiple predator effects in a grassland food web. Ecol. Lett. 12, 1317–1325 (2009).

    PubMed  Google Scholar 

  106. 106.

    Bartley, T. J. Flexible Food Web Structure in a Variable World. PhD thesis, University of Guelph (2017).

  107. 107.

    Dolson, R., McCann, K., Rooney, N. & Ridgway, M. Lake morphometry predicts the degree of habitat coupling by a mobile predator. Oikos 118, 1230–1238 (2009).

    Google Scholar 

  108. 108.

    Tunney, T. D., McCann, K. S., Lester, N. P. & Shuter, B. J. Food web expansion and contraction in response to changing environmental conditions. Nat. Commun. 3, 1105 (2012).

    PubMed  Google Scholar 

  109. 109.

    Morbey, Y. E., Couture, P., Busby, P. & Shuter, B. J. Physiological correlates of seasonal growth patterns in lake trout Salvelinus namaycush. J. Fish Biol. 77, 2298–2314 (2010).

    CAS  PubMed  Google Scholar 

  110. 110.

    Guzzo, M. M. & Blanchfield, P. J. Climate change alters the quantity and phenology of habitat for lake trout (Salvelinus namaycush) in small Boreal Shield lakes. Can. J. Fish. Aquat. Sci. 74, 871–884 (2017).

    Google Scholar 

  111. 111.

    Keller, W. Implications of climate warming for Boreal Shield lakes: a review and synthesis. Environ. Rev. 15, 99–112 (2007).

    CAS  Google Scholar 

  112. 112.

    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Barton, B. T. & Ives, A. R. Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology 95, 1479–1484 (2014).

    PubMed  Google Scholar 

  114. 114.

    Barton, B. T. & Ives, A. R. Species interactions and a chain of indirect effects driven by reduced precipitation. Ecology 95, 486–494 (2014).

    PubMed  Google Scholar 

  115. 115.

    Penczykowski, R. M., Connolly, B. M. & Barton, B. T. Winter is changing: trophic interactions under altered snow regimes. Food Webs 13, 80–91 (2017).

    Google Scholar 

  116. 116.

    Barton, B. T. Reduced wind strengthens top-down control of an insect herbivore. Ecology 95, 2375–2381 (2014).

    Google Scholar 

  117. 117.

    Barton, B. T. & Schmitz, O. J. Opposite effects of daytime and nighttime warming on top-down control of plant diversity. Ecology 99, 13–20 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

This project was in part funded by the University of Guelph’s Canada First Research Excellence Fund project ‘Food from Thought’ awarded to K.S.M. and A.S.M. and a Discovery Grant from the National Science and Engineering Research Council of Canada awarded to K.S.M. and A.S.M. T.J.B. was supported by a Canada Graduate Scholarship from the National Science and Engineering Research Council of Canada. We would like to thank the Ontario Ministry of Natural Resources and Forestry (OMNRF) and their Broad-Scale Fisheries Monitoring Program.

Author information

Affiliations

Authors

Contributions

T.J.B. and K.S.M. conceived the concept for and contributed equally to this paper. All authors contributed to the development of the ideas and to the writing and editing of the text, led by T.J.B. and K.S.M. T.J.B. and M.G. prepared the figures using data from T.J.B., T.D.T. and M.M.G., as well as other sources. T.J.B. and K.S.M. led the final draft preparation and submission stages with comments from all authors being received prior to submission.

Corresponding author

Correspondence to Timothy J. Bartley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bartley, T.J., McCann, K.S., Bieg, C. et al. Food web rewiring in a changing world. Nat Ecol Evol 3, 345–354 (2019). https://doi.org/10.1038/s41559-018-0772-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing