Food web rewiring in a changing world


Climate change is asymmetrically altering environmental conditions in space, from local to global scales, creating novel heterogeneity. Here, we argue that this novel heterogeneity will drive mobile generalist consumer species to rapidly respond through their behaviour in ways that broadly and predictably reorganize — or rewire — food webs. We use existing theory and data from diverse ecosystems to show that the rapid behavioural responses of generalists to climate change rewire food webs in two distinct and critical ways. First, mobile generalist species are redistributing into systems where they were previously absent and foraging on new prey, resulting in topological rewiring — a change in the patterning of food webs due to the addition or loss of connections. Second, mobile generalist species, which navigate between habitats and ecosystems to forage, will shift their relative use of differentially altered habitats and ecosystems, causing interaction strength rewiring — changes that reroute energy and carbon flows through existing food web connections and alter the food web’s interaction strengths. We then show that many species with shared traits can exhibit unified aggregate behavioural responses to climate change, which may allow us to understand the rewiring of whole food webs. We end by arguing that generalists’ responses present a powerful and underutilized approach to understanding and predicting the consequences of climate change and may serve as much-needed early warning signals for monitoring the looming impacts of global climate change on entire ecosystems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

Data availability

The data used to produce Figs. 1 and 3 can be found online at


  1. 1.

    Blanchard, J. L. A. A rewired food web. Nature 527, 7–8 (2015).

  2. 2.

    Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of Arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B 282, 20151546 (2015).

  3. 3.

    Kortsch, S. et al. Climate-driven regime shifts in Arctic marine benthos. Proc. Natl Acad. Sci. USA 109, 14052–14057 (2012).

  4. 4.

    Harmon, J. P. & Barton, B. T. On their best behavior: how animal behavior can help determine the combined effects of species interactions and climate change. Ann. NY Acad. Sci. 1297, 139–147 (2013).

  5. 5.

    Knowlton, J. L. & Graham, C. H. Using behavioral landscape ecology to predict species’ responses to land-use and climate change. Biol. Conserv. 143, 1342–1354 (2010).

  6. 6.

    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).

  7. 7.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

  8. 8.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

  9. 9.

    McCann, K. S. & Rooney, N. The more food webs change, the more they stay the same. Phil. Trans. R. Soc. B 364, 1789–1801 (2009).

  10. 10.

    Rooney, N., McCann, K. S. & Moore, J. C. A landscape theory for food web architecture. Ecol. Lett. 11, 867–881 (2008).

  11. 11.

    Schindler, D. E. Warmer climate squeezes aquatic predators out of their preferred habitat. Proc. Natl Acad. Sci. USA 114, 9764–9765 (2017).

  12. 12.

    Schmitz, O. J., Beckerman, A. P. & O’Brien, K. M. Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78, 1388–1399 (1997).

  13. 13.

    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).

  14. 14.

    Allen, C. & Holling, C. S. Discontinuities in Ecosystems and Other Complex Systems (Columbia Univ. Press, New York, 2008).

  15. 15.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

  16. 16.

    Butler, S. J., Vickery, J. A. & Norris, K. Farmland biodiversity and the footprint of agriculture. Science 315, 381–384 (2007).

  17. 17.

    Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. (eds) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, UK, 2012).

  18. 18.

    Flato, G. M. & Boer, G. J. Warming asymmetry in climate change simulations. Geophys. Res. Lett. 28, 195–198 (2001).

  19. 19.

    Xu, Y. & Ramanathan, V. Latitudinally asymmetric response of global surface temperature: implications for regional climate change. Geophys. Res. Lett. 39, L13706 (2012).

  20. 20.

    Chou, C., Tu, J.-Y. Y. & Tan, P.-H. H. Asymmetry of tropical precipitation change under global warming. Geophys. Res. Lett. 34, L17708 (2007).

  21. 21.

    Trenberth, K. E. & Hoar, T. J. El Niño and climate change. Geophys. Res. Lett. 24, 3057–3060 (1997).

  22. 22.

    Marshall, J. et al. The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Phil. Trans. R. Soc. A 372, 20130040 (2014).

  23. 23.

    Stouffer, R. J., Manabe, S. & Bryan, K. Interhemispheric asymmetry in climate response to a gradual increase of atmospheric C02. Nature 342, 660–662 (1989).

  24. 24.

    Sutton, R. T., Dong, B. & Gregory, J. M. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett. 34, L02701 (2007).

  25. 25.

    Karl, T. R. et al. Global warming: evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 18, 2253–2256 (1991).

  26. 26.

    Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).

  27. 27.

    O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).

  28. 28.

    Kaarlejärvi, E., Eskelinen, A. & Olofsson, J. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains. Nat. Commun. 8, 419 (2017).

  29. 29.

    Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. (Springer, Basel, 2012).

  30. 30.

    Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).

  31. 31.

    Guzzo, M. M., Blanchfield, P. J. & Rennie, M. D. Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator. Proc. Natl. Acad. Sci. USA 114, 9912–9917 (2017).

  32. 32.

    Tunney, T. D., McCann, K. S., Lester, N. P. & Shuter, B. J. Effects of differential habitat warming on complex communities. Proc. Natl Acad. Sci. USA 111, 8077–8082 (2014).

  33. 33.

    Schmitz, O. J. & Barton, B. T. Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol. Control 75, 87–96 (2014).

  34. 34.

    Alofs, K. M., Jackson, D. A. & Lester, N. P. Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Divers. Distrib. 20, 123–136 (2014).

  35. 35.

    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

  36. 36.

    Menendez, R. et al. Species richness changes lag behind climate change. Proc. R. Soc. B 273, 1465–1470 (2006).

  37. 37.

    Wilson, R. J., Gutiérrez, D., Gutiérrez, J. & Monserrat, V. J. An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob. Change Biol. 13, 1873–1887 (2007).

  38. 38.

    Kerr, J. T. et al. Climate change impacts on bumblebees across continents. Science 349, 177–180 (2015).

  39. 39.

    Lurgi, M., López, B. C. & Montoya, J. M. Climate change impacts on body size and food web structure on mountain ecosystems. Phil. Trans. R. Soc. B 367, 3050–3057 (2012).

  40. 40.

    Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48, 25–48 (2017).

  41. 41.

    Travis, J. M. J. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc. R. Soc. B 270, 467–473 (2003).

  42. 42.

    Sax, D. F., Gaines, S. D. & Brown, J. H. Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. Am. Nat. 160, 766–783 (2002).

  43. 43.

    Pires, M. M. Rewilding ecological communities and rewiring ecological networks. Perspect. Ecol. Conserv. 15, 257–265 (2017).

  44. 44.

    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

  45. 45.

    Lu, X. et al. Drought rewires the cores of food webs. Nat. Clim. Change 6, 875–878 (2016).

  46. 46.

    May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, Princeton, NJ, USA, 1973).

  47. 47.

    Yodzis, P. The connectance of real ecosystems. Nature 284, 544–545 (1980).

  48. 48.

    Pimm, S. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

  49. 49.

    Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281, 20140846 (2014).

  50. 50.

    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

  51. 51.

    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

  52. 52.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

  53. 53.

    McCann, K. S. Food Webs (Princeton Univ. Press, Princeton, NJ, USA, 2011).

  54. 54.

    Neutel, A.-M. et al. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002).

  55. 55.

    Yodzis, P. The stability of real ecosystems. Nature 289, 674–676 (1981).

  56. 56.

    Lurgi, M., Lopez, B. C. & Montoya, J. M. Novel communities from climate change. Phil. Trans. R. Soc. B 367, 2913–2922 (2012).

  57. 57.

    Humphries, M. M., Umbanhowar, J. & McCann, K. S. Bioenergetic prediction of climate change impacts on northern mammals. Integr. Comp. Biol. 44, 152–162 (2004).

  58. 58.

    Velarde, E., Ezcurra, E. & Anderson, D. W. Seabird diets provide early warning of sardine fishery declines in the Gulf of California. Sci. Rep. 3, 1332 (2013).

  59. 59.

    Cherry, M. J. & Barton, B. T. Effects of wind on predator-prey interactions. Food Webs 13, 92–97 (2017).

  60. 60.

    Barton, B. T., Beckerman, A. P. & Schmitz, O. J. Climate warming strengthens indirect interactions in an old-field food web. Ecology 90, 2346–2351 (2009).

  61. 61.

    Barton, B. T. Local adaptation to temperature conserves top-down control in a grassland food web. Proc. R. Soc. B 278, 3102–3107 (2011).

  62. 62.

    Yurkowski, D. J. et al. Temporal shifts in intraguild predation pressure between beluga whales and Greenland halibut in a changing Arctic. Biol. Lett. 13, 20170433 (2017).

  63. 63.

    Prop, J. et al. Climate change and the increasing impact of polar bears on bird populations. Front. Ecol. Evol. 3, 33 (2015).

  64. 64.

    Hamilton, C. D., Kovacs, K. M., Ims, R. A., Aars, J. & Lydersen, C. An Arctic predator–prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals. J. Anim. Ecol. 86, 1054–1064 (2017).

  65. 65.

    Smith, P. A., Elliott, K. H., Gaston, A. J. & Gilchrist, H. G. Has early ice clearance increased predation on breeding birds by polar bears? Polar Biol. 33, 1149–1153 (2010).

  66. 66.

    Dey, C. J. et al. Increasing nest predation will be insufficient to maintain polar bear body condition in the face of sea ice loss. Glob. Change Biol. 23, 1821–1831 (2017).

  67. 67.

    Robinson, R. A. et al. Travelling through a warming world: climate change and migratory species. Endanger. Species Res. 7, 87–99 (2009).

  68. 68.

    Deacy, W. W. et al. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon. Proc. Natl Acad. Sci. USA 114, 10432–10437 (2017).

  69. 69.

    VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).

  70. 70.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

  71. 71.

    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).

  72. 72.

    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

  73. 73.

    Peters, R. H. The Ecological Implications of Body Size (Cambridge Studies in Ecology, Cambridge Univ. Press, Cambridge, UK, 1983).

  74. 74.

    Sandstrom, S., Rawson, M. & Lester, N. Manual of Instructions for Broad-Scale Fish Community Monitoring Using North American (NA1) and Ontario Small Mesh (ON2) Gillnets (Queen’s Printer for Ontario, 2013).

  75. 75.

    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

  76. 76.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

  77. 77.

    Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Phil. Trans. R. Soc. B 370, 20130269 (2014).

  78. 78.

    Overpeck, J. et al. Arctic environment change of the last four centuries. Science 278, 1251–1257 (1997).

  79. 79.

    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

  80. 80.

    Vander Zanden, M. J., Casselman, J. M. & Rasmussen, J. B. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467 (1999).

  81. 81.

    Rooney, N. & McCann, K. S. Integrating food web diversity, structure and stability. Trends Ecol. Evol. 27, 40–45 (2012).

  82. 82.

    Cassman, K. G. et al. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA 96, 5952–5959 (1999).

  83. 83.

    Fedoroff, N. V. et al. Radically rethinking agriculture for the 21st century. Science 327, 833–834 (2010).

  84. 84.

    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

  85. 85.

    Eldredge, N. Life in the Balance: Humanity and the Biodiversity Crisis (Princeton Univ. Press, 2000).

  86. 86.

    Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).

  87. 87.

    Gilljam, D., Curtsdotter, A. & Ebenman, B. Adaptive rewiring aggravates the effects of species loss in ecosystems. Nat. Commun. 6, 8412 (2015).

  88. 88.

    Pimm, S. L. & Lawton, J. H. Are food webs divided into compartments? J. Anim. Ecol. 49, 879–898 (1980).

  89. 89.

    Moore, J. C. & Hunt, W. H. Resource compartmentation and the stability of real ecosystems. Nature 333, 261–263 (1988).

  90. 90.

    Wootton, K. L. & Stouffer, D. B. Many weak interactions and few strong; food-web feasibility depends on the combination of the strength of species’ interactions and their correct arrangement. Theor. Ecol. 9, 185–195 (2016).

  91. 91.

    McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).

  92. 92.

    Gilbert, B. et al. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17, 902–914 (2014).

  93. 93.

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

  94. 94.

    Boettiger, C., Ross, N. & Hastings, A. Early warning signals: the charted and uncharted territories. Theor. Ecol. 6, 255–264 (2013).

  95. 95.

    Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).

  96. 96.

    Yodzis, P. & Innes, S. Body size and consumer-resource dynamics. Am. Nat. 139, 1151–1175 (1992).

  97. 97.

    Kéfi, S. et al. Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9, 10–13 (2014).

  98. 98.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

  99. 99.

    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

  100. 100.

    McMeans, B. C. et al. The adaptive capacity of lake food webs: from individuals to ecosystems. Ecol. Monogr. 86, 4–19 (2016).

  101. 101.

    Aspillaga, E. et al. Thermal stratification drives movement of a coastal apex predator. Sci. Rep. 7, 526 (2017).

  102. 102.

    Sato, C. F. & Lindenmayer, D. B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 11, e12348 (2017).

  103. 103.

    GISS Surface Temperature Analysis (GISTEMP) (NASA Goddard Institute for Space Studies, 2018);

  104. 104.

    Hansen, J. et al. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

  105. 105.

    Barton, B. T. & Schmitz, O. J. Experimental warming transforms multiple predator effects in a grassland food web. Ecol. Lett. 12, 1317–1325 (2009).

  106. 106.

    Bartley, T. J. Flexible Food Web Structure in a Variable World. PhD thesis, University of Guelph (2017).

  107. 107.

    Dolson, R., McCann, K., Rooney, N. & Ridgway, M. Lake morphometry predicts the degree of habitat coupling by a mobile predator. Oikos 118, 1230–1238 (2009).

  108. 108.

    Tunney, T. D., McCann, K. S., Lester, N. P. & Shuter, B. J. Food web expansion and contraction in response to changing environmental conditions. Nat. Commun. 3, 1105 (2012).

  109. 109.

    Morbey, Y. E., Couture, P., Busby, P. & Shuter, B. J. Physiological correlates of seasonal growth patterns in lake trout Salvelinus namaycush. J. Fish Biol. 77, 2298–2314 (2010).

  110. 110.

    Guzzo, M. M. & Blanchfield, P. J. Climate change alters the quantity and phenology of habitat for lake trout (Salvelinus namaycush) in small Boreal Shield lakes. Can. J. Fish. Aquat. Sci. 74, 871–884 (2017).

  111. 111.

    Keller, W. Implications of climate warming for Boreal Shield lakes: a review and synthesis. Environ. Rev. 15, 99–112 (2007).

  112. 112.

    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).

  113. 113.

    Barton, B. T. & Ives, A. R. Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology 95, 1479–1484 (2014).

  114. 114.

    Barton, B. T. & Ives, A. R. Species interactions and a chain of indirect effects driven by reduced precipitation. Ecology 95, 486–494 (2014).

  115. 115.

    Penczykowski, R. M., Connolly, B. M. & Barton, B. T. Winter is changing: trophic interactions under altered snow regimes. Food Webs 13, 80–91 (2017).

  116. 116.

    Barton, B. T. Reduced wind strengthens top-down control of an insect herbivore. Ecology 95, 2375–2381 (2014).

  117. 117.

    Barton, B. T. & Schmitz, O. J. Opposite effects of daytime and nighttime warming on top-down control of plant diversity. Ecology 99, 13–20 (2018).

Download references


This project was in part funded by the University of Guelph’s Canada First Research Excellence Fund project ‘Food from Thought’ awarded to K.S.M. and A.S.M. and a Discovery Grant from the National Science and Engineering Research Council of Canada awarded to K.S.M. and A.S.M. T.J.B. was supported by a Canada Graduate Scholarship from the National Science and Engineering Research Council of Canada. We would like to thank the Ontario Ministry of Natural Resources and Forestry (OMNRF) and their Broad-Scale Fisheries Monitoring Program.

Author information

T.J.B. and K.S.M. conceived the concept for and contributed equally to this paper. All authors contributed to the development of the ideas and to the writing and editing of the text, led by T.J.B. and K.S.M. T.J.B. and M.G. prepared the figures using data from T.J.B., T.D.T. and M.M.G., as well as other sources. T.J.B. and K.S.M. led the final draft preparation and submission stages with comments from all authors being received prior to submission.

Correspondence to Timothy J. Bartley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bartley, T.J., McCann, K.S., Bieg, C. et al. Food web rewiring in a changing world. Nat Ecol Evol 3, 345–354 (2019).

Download citation

Further reading