Article | Published:

Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation

Nature Ecology & Evolutionvolume 3pages223231 (2019) | Download Citation

Abstract

Climate warming may stimulate microbial metabolism of soil carbon, causing a carbon-cycle–climate feedback whereby carbon is redistributed from the soil to atmospheric CO2. The magnitude of this feedback is uncertain, in part because warming-induced shifts in microbial physiology and/or community composition could retard or accelerate soil carbon losses. Here, we measure microbial respiration rates for soils collected from 22 sites in each of 3 years, at locations spanning boreal to tropical climates. Respiration was measured in the laboratory with standard temperatures, moisture and excess carbon substrate, to allow physiological and community effects to be detected independent of the influence of these abiotic controls. Patterns in respiration for soils collected across the climate gradient are consistent with evolutionary theory on physiological responses that compensate for positive effects of temperature on metabolism. Respiration rates per unit microbial biomass were as much as 2.6 times higher for soils sampled from sites with a mean annual temperature of −2.0 versus 21.7 °C. Subsequent 100-d incubations suggested differences in the plasticity of the thermal response among microbial communities, with communities sampled from sites with higher mean annual temperature having a more plastic response. Our findings are consistent with adaptive metabolic responses to contrasting thermal regimes that are also observed in plants and animals. These results may help build confidence in soil-carbon–climate feedback projections by improving understanding of microbial processes represented in biogeochemical models.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Data in the support of these findings and the R code for the statistical models are available via the Dryad Digital Repository (https://doi.org/10.5061/dryad.s87008d).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Doetterl, S. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8, 780–783 (2015).

  2. 2.

    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

  3. 3.

    Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth System Models. J. Clim. 26, 5289–5314 (2013).

  4. 4.

    Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

  5. 5.

    Exbrayat, J.-F., Pitman, A. J. & Abramowitz, G. Response of microbial decomposition to spin-up explains CMIP5 soil carbon range until 2100. Geosci. Model Dev. 7, 3481–3504 (2014).

  6. 6.

    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).

  7. 7.

    Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017).

  8. 8.

    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).

  9. 9.

    Wieder, W. R. et al. Carbon cycle confidence and uncertainty: exploring variation among soil biogeochemical models. Glob. Change Biol. 24, 1563–1579 (2017).

  10. 10.

    Sulman, B. N. et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry 141, 109–123 (2018).

  11. 11.

    Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Change 4, 903–906 (2014).

  12. 12.

    Tang, J. & Riley, W. J. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat. Clim. Change 5, 56–60 (2015).

  13. 13.

    Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. & Pacala, S. W. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat. Clim. Change 4, 1099–1102 (2014).

  14. 14.

    Buchkowski, R. W., Bradford, M. A., Grandy, A. S., Schmitz, O. J. & Wieder, W. R. Applying population and community ecology theory to advance understanding of belowground biogeochemistry. Ecol. Lett. 20, 231–245 (2017).

  15. 15.

    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

  16. 16.

    Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford Univ. Press, New York, 2002).

  17. 17.

    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).

  18. 18.

    Auffret, M. D. et al. The role of microbial community composition in controlling soil respiration responses to temperature. PLoS ONE 11, 0165448 (2016).

  19. 19.

    Pold, G., Melillo, J. M. & DeAngelis, K. M. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front. Microbiol. 6, 480 (2015).

  20. 20.

    Bai, Z. et al. Shifts in microbial trophic strategy explain different temperature sensitivity of CO2 flux under constant and diurnally varying temperature regimes. FEMS Microbiol. Ecol. 93, fix063 (2017).

  21. 21.

    Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).

  22. 22.

    Whitaker, J. et al. Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient. J. Ecol. 102, 1058–1071 (2014).

  23. 23.

    Munafò, M. R. & Davey Smith, G. Repeating experiments is not enough. Nature 553, 399–401 (2018).

  24. 24.

    Bengston, P. & Bengtsson, G. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures. Ecol. Lett. 10, 783–790 (2007).

  25. 25.

    Nazaries, L. et al. Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming. Soil Biol. Biochem. 89, 123–134 (2015).

  26. 26.

    Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).

  27. 27.

    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).

  28. 28.

    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).

  29. 29.

    Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Change 3, 395–398 (2013).

  30. 30.

    Rousk, J. Biomass or growth? How to measure soil food webs to understand structure and function. Soil Biol. Biochem. 102, 45–47 (2016).

  31. 31.

    Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0770-5 (2019).

  32. 32.

    Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).

  33. 33.

    Hamdi, S., Moyano, F., Sall, S., Bernoux, M. & Chevallier, T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. 58, 115–126 (2013).

  34. 34.

    Angilletta, M. J. Jr Thermal Adaptation. A Theoretical and Empirical Synthesis (Oxford Univ. Press, New York, 2009).

  35. 35.

    Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 333 (2013).

  36. 36.

    Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).

  37. 37.

    Tjoelker, M. G., Oleksyn, J., Reich, P. B. & Zytkowiak, R. Coupling of respiration, nitrogen, and sugars underlies convergent temperature acclimation in Pinus banksiana across wide-ranging sites and populations. Glob. Change Biol. 14, 782–797 (2008).

  38. 38.

    Crowther, T. W. et al. Untangling the fungal niche: the trait-based approach. Front. Microbiol. 5, 579 (2014).

  39. 39.

    Evans, S. E. & Wallenstein, M. D. Climate change alters ecological strategies of soil bacteria. Ecol. Lett. 17, 155–164 (2014).

  40. 40.

    Blagodatskaya, E., Blagodatsky, S., Khomyakov, N., Myachina, O. & Kuzyakov, Y. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro. Sci. Rep. 6, 22240 (2016).

  41. 41.

    Strickland, M. S., Keiser, A. D. & Bradford, M. A. Climate history shapes contemporary leaf litter decomposition. Biogeochemistry 122, 165–174 (2015).

  42. 42.

    Eilers, K. G., Lauber, C. L., Knight, R. & Fierer, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42, 896–903 (2010).

  43. 43.

    Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018).

  44. 44.

    Van Hees, P. A. W., Jones, D. L., Finlay, R., Godbold, D. L. & Lundström, U. S. The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol. Biochem. 37, 1–13 (2005).

  45. 45.

    Min, K., Lehmeier, C. A., Ballantyne, F. & Billings, S. A. Carbon availability modifies temperature responses of heterotrophic microbial respiration, carbon uptake affinity, and stable carbon isotope discrimination. Front. Microbiol. 7, 2083 (2016).

  46. 46.

    Schindlbacher, A., Schnecker, J., Takriti, M., Borken, W. & Wanek, W. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest—no indications for thermal adaptations. Glob. Change Biol. 21, 4265–4277 (2015).

  47. 47.

    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–104 (2017).

  48. 48.

    Wu, C. S. et al. Heterotrophic respiration does not acclimate to continuous warming in a subtropical forest. Sci. Rep. 6, 21561 (2016).

  49. 49.

    Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Change Biol. 19, 252–263 (2013).

  50. 50.

    Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J. & Torn, M. S. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat. Commun. 8, 1223 (2017).

  51. 51.

    Crowther, T. W. et al. Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study. Glob. Change Biol. 20, 2983–2994 (2014).

  52. 52.

    Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N. & Chandler, R. E. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154, 1222–1226 (1983).

  53. 53.

    Paul, E. A., Morris, S. J. & Böhm, S. in Assessment Methods for Soil Carbon (eds Lal, R. Kimble, J. M., Follett, R. F. & Stewart, B. A.) 193–205 (CRC Press, Boca Raton, 2001).

  54. 54.

    Bradford, M. A., Watts, B. W. & Davies, C. A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Change Biol. 16, 1576–1588 (2010).

  55. 55.

    Smets, W. et al. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol. Biochem. 96, 145–151 (2016).

  56. 56.

    Wardle, D. A. & Ghani, A. Why is the strength of relationships between pairs of methods for estimating soil microbial biomass often so variable? Soil Biol. Biochem. 27, 821–828 (1995).

  57. 57.

    Bradford, M. A. et al. Decreased mass specific respiration under experimental warming is robust to the microbial biomass method employed. Ecol. Lett. 12, E15–E18 (2009).

  58. 58.

    Anderson, J. P. E. & Domsch, K. H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).

  59. 59.

    Findlay, R. & Dobbs, F. in Current Methods in Aquatic Microbial Ecology (ed. Kemp, P. F.) 271–284 (Lewis Publications, Boca Raton, 1993).

  60. 60.

    Grandy, A. S., Strickland, M. S., Lauber, C., Bradford, M. A. & Fierer, N. The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma 150, 278–286 (2009).

  61. 61.

    Bradford, M. A. et al. A test of the hierarchical model of litter decomposition. Nat. Ecol. Evol. 1, 1836–1845 (2017).

  62. 62.

    Jaśienski, M. & Bazzaz, F. A. The fallacy of ratios and the testability of models in biology. Oikos 84, 321–326 (1999).

  63. 63.

    Hobbs, N. T., Andren, H., Persson, J., Aronsson, M. & Chapron, G. Native predators reduce harvest of reindeer by Sámi pastoralists. Ecol. App. 22, 1640–1654 (2012).

  64. 64.

    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

  65. 65.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, Cambridge, 2007).

  66. 66.

    Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).

  67. 67.

    Luke, S. G. Evaluating significance in linear mixed-effects models in R. Behav. Res. 49, 1494–1502 (2017).

  68. 68.

    Baayen, R. H., Davidson, D. J. & Bates, D. M. Mixed-effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 59, 390–412 (2008).

  69. 69.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

  70. 70.

    Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104, 229–238 (2016).

Download references

Acknowledgements

Research was supported by the US National Science Foundation with grants to M.A.B., R.L.M. and N.F. (DEB-1457614, -1021098, -1021222 and -1021112). This work was made possible by the generosity of researchers at the 11 locations who collected and packaged soils—in particular, A. Keiser, I. Halm, S. Bailey, M. Schulze, S. VanderWulp, P. O’Neal, T. Van Slyke, K. Chowanski, J. Love, A. Barker Plotkin, S. Cantrell and C. Giardina. Thanks also to J. Nelson for the PLFA analyses, and the Bradford laboratory group and M. Dacal for comments on an earlier version of the manuscript.

Author information

Affiliations

  1. School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA

    • Mark A. Bradford
    • , Emily E. Oldfield
    •  & Stephen A. Wood
  2. Department of Plant and Soil Science, University of Kentucky, Lexington, KY, USA

    • Rebecca L. McCulley
  3. Institute of Integrative Biology, ETH Zurich, Zürich, Switzerland

    • Thomas. W. Crowther
  4. The Nature Conservancy, Arlington, VA, USA

    • Stephen A. Wood
  5. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA

    • Noah Fierer
  6. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA

    • Noah Fierer

Authors

  1. Search for Mark A. Bradford in:

  2. Search for Rebecca L. McCulley in:

  3. Search for Thomas. W. Crowther in:

  4. Search for Emily E. Oldfield in:

  5. Search for Stephen A. Wood in:

  6. Search for Noah Fierer in:

Contributions

M.A.B., R.L.M. and N.F. co-designed the study and wrote the application for the grant that funded the work. M.A.B., R.L.M., E.E.O. and T.W.C. collected the data and performed the laboratory work. S.A.W. and M.A.B. carried out the statistical analyses. All authors contributed to interpreting the data and writing the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Mark A. Bradford.

Supplementary information

  1. Supplementary Information

    Supplementary Figure 1 and Supplementary Tables 1–5

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41559-018-0771-4

Further reading