Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pterosaur integumentary structures with complex feather-like branching

Subjects

Matters Arising to this article was published on 28 September 2020

Abstract

Pterosaurs were the first vertebrates to achieve true flapping flight, but in the absence of living representatives, many questions concerning their biology and lifestyle remain unresolved. Pycnofibres—the integumentary coverings of pterosaurs—are particularly enigmatic: although many reconstructions depict fur-like coverings composed of pycnofibres, their affinities and function are not fully understood. Here, we report the preservation in two anurognathid pterosaur specimens of morphologically diverse pycnofibres that show diagnostic features of feathers, including non-vaned grouped filaments and bilaterally branched filaments, hitherto considered unique to maniraptoran dinosaurs, and preserved melanosomes with diverse geometries. These findings could imply that feathers had deep evolutionary origins in ancestral archosaurs, or that these structures arose independently in pterosaurs. The presence of feather-like structures suggests that anurognathids, and potentially other pterosaurs, possessed a dense filamentous covering that probably functioned in thermoregulation, tactile sensing, signalling and aerodynamics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integumentary filamentous structures in CAGS–Z070.
Fig. 2: Preservation, microstructure and chemistry of the integumentary filamentous structures in NJU–57003.
Fig. 3: Phylogenetic comparative analysis of integumentary filament and feather evolution in pterosaurs and archosaurs.
Fig. 4: Reconstruction of one of the studied anurognathid pterosaurs.

Yuan Zhang

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Supplementary Information.

References

  1. Lucas, A. M. S. & Peter, R. Avian Anatomy: Integument (US Agricultural Research Service, Washington DC, 1972).

  2. Barrett, P. M., Evans, D. C. & Campione, N. E. Evolution of dinosaur epidermal structures. Biol. Lett. 11, 20150229 (2015).

    Article  Google Scholar 

  3. Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).

    Article  Google Scholar 

  4. Di-Poï, N. & Milinkovitch, M. C. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes. Sci. Adv. 2, e1600708 (2016).

    Article  Google Scholar 

  5. Chen, C. F. et al. Development, regeneration, and evolution of feathers. Annu. Rev. Anim. Biosci. 3, 169–195 (2015).

    Article  Google Scholar 

  6. Mayr, G., Pittman, M., Saitta, E., Kaye, T. G. & Vinther, J. Structure and homology of Psittacosaurus tail bristles. Palaeontology 59, 793–802 (2016).

    Article  Google Scholar 

  7. Zheng, X. T., You, H. L., Xu, X. & Dong, Z. M. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 458, 333–336 (2009).

    Article  CAS  Google Scholar 

  8. Godefroit, P. et al. A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science 345, 451–455 (2014).

    Article  CAS  Google Scholar 

  9. Kellner, A. W. et al. The soft tissue of Jeholopterus (Pterosauria, Anurognathidae, Batrachognathinae) and the structure of the pterosaur wing membrane. Proc. R. Soc. B 277, 321–329 (2010).

    Article  Google Scholar 

  10. Sharov, A. G. New flying reptiles from the Mesozoic of Kazakhstan and Kirgizia [in Russian]. Tr. Inst. Palaeontol. Akad. Nauk SSSR 130, 104–113 (1971).

    Google Scholar 

  11. Czerkas, S. A. & Ji, Q. in Feathered Dinosaurs and the Origin of Flight (ed. Czerkas, S. J.) 15–41 (The Dinosaur Museum, Blanding, 2002).

  12. Unwin, D. M. & Bakhurina, N. N. Sordes pilosus and the nature of the pterosaur flight apparatus. Nature 371, 62–64 (1994).

    Article  Google Scholar 

  13. Ji, Q. & Yuan, C. Discovery of two kinds of protofeathered pterosaurs in the Mesozoic Daohugou Biota in the Ningcheng region and its stratigraphic and biologic significances. Geol. Rev. 48, 221–224 (2002).

    Google Scholar 

  14. Xu, X., Zhou, Z., Sullivan, C., Wang, Y. & Ren, D. An updated review of the Middle–Late Jurassic Yanliao Biota: chronology, taphonomy, paleontology and paleoecology. Acta Geol. Sin. 90, 2229–2243 (2016).

    Article  Google Scholar 

  15. Unwin, D. M. On the phylogeny and evolutionary history of pterosaurs. Geol. Soc. Lond. Spec. Publ. 217, 139–190 (2003).

    Article  Google Scholar 

  16. Frey, E., Tischlinger, H., Buchy, M. C. & Martill, D. M. New specimens of Pterosauria (Reptilia) with soft parts with implications for pterosaurian anatomy and locomotion. Geol. Soc. Lond. Spec. Publ. 217, 233–266 (2003).

    Article  Google Scholar 

  17. Lindgren, J. et al. Interpreting melanin-based coloration through deep time: a critical review. Proc. R. Soc. B 282, 20150614 (2015).

    Article  Google Scholar 

  18. Lindgren, J. et al. Molecular composition and ultrastructure of Jurassic paravian feathers. Sci. Rep. 5, 13520 (2015).

    Article  CAS  Google Scholar 

  19. Barden, H. E. et al. Morphological and geochemical evidence of eumelanin preservation in the feathers of the Early Cretaceous bird, Gansus yumenensis. PLoS ONE 6, e25494 (2011).

    Article  CAS  Google Scholar 

  20. Bendit, E. Infrared absorption spectrum of keratin. I. Spectra of α-, β-, and supercontracted keratin. Biopolymers 4, 539–559 (1966).

    Article  CAS  Google Scholar 

  21. Martinez-Hernandez, A. L., Velasco-Santos, C., De Icaza, M. & Castano, V. M. Microstructural characterisation of keratin fibres from chicken feathers. Int. J. Envir. Pollut. 23, 162–178 (2005).

    Article  CAS  Google Scholar 

  22. Liu, Y. et al. Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem. Photobiol. 81, 135–144 (2005).

    Article  CAS  Google Scholar 

  23. Alibardi, L. Adaptation to the land: the skin of reptiles in comparison to that of amphibians and endotherm amniotes. J. Exp. Zool. 298B, 12–41 (2009).

    Article  Google Scholar 

  24. Kreplak, L., Doucet, J., Dumas, P. & Briki, F. New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers. Biophys. J. 87, 640–647 (2004).

    Article  CAS  Google Scholar 

  25. Yassine, W. et al. Reversible transition between α-helix and β-sheet conformation of a transmembrane domain. Biochim. Biophys. Acta – Biomembr. 1788, 1722–1730 (2009).

    Article  CAS  Google Scholar 

  26. Xu, X. et al. A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 521, 70–73 (2015).

    Article  CAS  Google Scholar 

  27. Donoghue, P. C. J. & Benton, M. J. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol. Evol. 22, 424–431 (2007).

    Article  Google Scholar 

  28. Baron, M. G., Norman, D. B. & Barrett, P. M. A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543, 501–506 (2017).

    Article  CAS  Google Scholar 

  29. Persons, W. S. IV & Currie, P. J. Bristles before down: a new perspective on the functional origin of feathers. Evolution 69, 857–862 (2015).

    Article  Google Scholar 

  30. Ruxton, G. D., Persons, W. S. IV & Currie, P. J. A continued role for signaling functions in the early evolution of feathers. Evolution 71, 797–799 (2017).

    Article  Google Scholar 

  31. Bullen, R. D. & McKenzie, N. L. The pelage of bats (Chiroptera) and the presence of aerodynamic riblets: the effect on aerodynamic cleanliness. Zoology 111, 279–286 (2008).

    Article  Google Scholar 

  32. Caro, T. The adaptive significance of coloration in mammals. Bioscience 55, 125–136 (2005).

    Article  Google Scholar 

  33. Homberger, D. G. & de Silva, K. N. Functional microanatomy of the feather-bearing integument: implications for the evolution of birds and avian flight. Am. Zool. 40, 553–574 (2000).

    Google Scholar 

  34. Scholander, P., Walters, V., Hock, R. & Irving, L. Body insulation of some arctic and tropical mammals and birds. Biol. Bull. 99, 225–236 (1950).

    Article  CAS  Google Scholar 

  35. Ling, J. K. Pelage and molting in wild mammals with special reference to aquatic forms. Q. Rev. Biol. 45, 16–54 (1970).

    Article  CAS  Google Scholar 

  36. Gao, J., Yu, W. & Pan, N. Structures and properties of the goose down as a material for thermal insulation. Text. Res. J. 77, 617–626 (2007).

    Article  CAS  Google Scholar 

  37. Cunningham, S. J., Alley, M. R. & Castro, I. Facial bristle feather histology and morphology in New Zealand birds: implications for function. J. Morphol. 272, 118–128 (2011).

    Article  Google Scholar 

  38. McNamara, M. E., Briggs, D. E. G., Orr, P. J., Field, D. J. & Wang, Z. Experimental maturation of feathers: implications for reconstructions of fossil feather colour. Biol. Lett. 9, 20130184 (2013).

    Article  Google Scholar 

  39. Colleary, C. et al. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. Proc. Natl Acad. Sci. USA 112, 12592–12597 (2015).

    Article  CAS  Google Scholar 

  40. Wang, X. et al. Basal paravian functional anatomy illuminated by high-detail body outline. Nat. Commun. 8, 14576 (2017).

    Article  Google Scholar 

  41. Kaye, T. G. et al. Laser-stimulated fluorescence in paleontology. PLoS ONE 10, e0125923 (2015).

    Article  Google Scholar 

  42. Xu, X., Zheng, X. & You, H. Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature 464, 1338–1341 (2010).

    Article  CAS  Google Scholar 

  43. Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).

    Article  Google Scholar 

  44. Paradis, E. Analysis of Phylogenetics and Evolution with R (Springer Science & Business Media, New York, 2011).

  45. Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

  46. Bell, M. A. & Lloyd, G. T. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontol. 58, 379–389 (2015).

  47. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Q. Ji, S. Ji and H. Huang for access to the specimen CAGS–Z070, as well as S. C. Kohn, Y. Fang, C. Wang and T. He for laboratory assistance. This work was supported by the National Natural Science Foundation of China (41672010 and 41688103) and Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB26000000) to B.J., Research Grant Council of Hong Kong-General Research Fund (17103315) to M.P., ERC-StG-2014-637691-ANICOLEVO to M.E.M. and Natural Environment Research Council Standard Grant NE/1027630/1 to M.J.B.

Author information

Authors and Affiliations

Authors

Contributions

B.J. and M.J.B. designed the research. Z.Y., B.J. and X.X. systematically studied the specimens. Z.Y., S.L.K., M.E.M. and P.J.O. performed the SEM analysis. Z.Y. and B.J. performed the FTIR analysis. M.P. and T.G.K. performed the laser-stimulated fluorescence imaging, data reduction and interpretation. M.J.B. performed the maximum-likelihood analyses. Z.Y., B.J., M.J.B., M.E.M., X.X. and P.J.O. wrote the paper. All authors approved the final draft of the paper.

Corresponding authors

Correspondence to Baoyu Jiang or Michael J. Benton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Figures, Tables and References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Jiang, B., McNamara, M.E. et al. Pterosaur integumentary structures with complex feather-like branching. Nat Ecol Evol 3, 24–30 (2019). https://doi.org/10.1038/s41559-018-0728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0728-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing