Predation shapes the evolutionary traits of cervid weapons

Abstract

Sexually selected weapons evolved to maximize the individual reproductive success of males in many polygynous breeding species. Many weapons are also retained outside of reproductive periods for secondary reasons, but the importance of these secondary functions is poorly understood. Here we leveraged a unique opportunity from the predator–prey system in northern Yellowstone National Park, WY, USA to evaluate whether predation by a widespread, coursing predator (wolves) has influenced a specific weapon trait (antler retention time) in their primary cervid prey (elk). Male elk face a trade-off: individuals casting antlers early begin regrowth before other males, resulting in relatively larger antlers the following year, and thus greater reproductive success, as indicated by research with red deer. We show, however, that male elk that cast their antlers early are preferentially hunted and killed by wolves, despite early casters being in better nutritional condition than antlered individuals. Our results run counter to classic expectations of coursing predators preferring poorer-conditioned individuals, and in so doing, reveal an important secondary function for an exaggerated sexually selected weapon—predatory deterrence. We suggest this secondary function played a key evolutionary role in elk; uniquely among North American cervids, they retain their antlers long after they fulfil their primary role in reproduction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The function of antlers and wolf–adult male elk encounters.

illustration by E. Harrington, Missoula, MT, USA.

Fig. 2: Adult male elk antler condition and preference by wolves.
Fig. 3: Characteristics of wolf-killed male elk and antler condition.
Fig. 4: Antler traits of adult male North American ungulate species.

illustration by E. Harrington, Missoula, MT, USA.

Data availability

Data used for analyses is available at https://datadryad.org/resource/doi:10.5061/dryad.j72tt79.

References

  1. 1.

    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Clutton-Brock, T. H. Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems (Univ. Chicago Press, Chicago, IL, 1988).

  3. 3.

    Darwin, C. The Descent of Man, and Selection in Relation to Sex (John Murray, London, 1871).

  4. 4.

    Andersson, M. Sexual Selection (Princeton Univ. Press, Princeton, NJ, 1994).

  5. 5.

    Godin, J.-G. J. & McDonough, H. E. Predator preference for brightly colored males in the guppy: a viability cost for a sexually selected trait. Behav. Ecol. 14, 194–200 (2003).

    Article  Google Scholar 

  6. 6.

    Johnson, S. & Candolin, U. Predation cost of a sexual signal in the threespine stickleback. Behav. Ecol. 28, 1160–1165 (2017).

    Article  Google Scholar 

  7. 7.

    Stuart-Fox, D. M., Moussalli, A., Marshall, N. J. & Owens, I. P. F. Conspicuous males suffer higher predation risk: visual modelling and experimental evidence from lizards. Anim. Behav. 66, 541–550 (2003).

    Article  Google Scholar 

  8. 8.

    Goyens, J., Dirckx, J. & Aerts, P. Costly sexual dimorphism in Cyclommatus metallifer stag beetles. Funct. Ecol. 29, 35–43 (2015).

    Article  Google Scholar 

  9. 9.

    Bildstein, K. L., McDowell, S. G. & Brisbin, I. L. Consequences of sexual dimorphism in sand fiddler crabs, Uca pugilator: differential vulnerability to avian predation. Anim. Behav. 37, 133–139 (1989).

    Article  Google Scholar 

  10. 10.

    McLain, D. K., Pratt, A. E. & Berry, A. S. Predation by red-jointed fiddler crabs on congeners: interaction between body size and positive allometry of the sexually selected claw. Behav. Ecol. 14, 741–747 (2003).

    Article  Google Scholar 

  11. 11.

    Bro-Jørgensen, J. The intensity of sexual selection predicts weapon size in male bovids. Evolution 61, 1316–1326 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Clutton-Brock, T. H., Albon, S. D. & Harvey, P. H. Antlers, body size and breeding group size in the Cervidae. Nature 285, 565–567 (1980).

    Article  Google Scholar 

  13. 13.

    Coltman, D. W., Festa-Bianchet, M., Jorgenson, J. T. & Strobeck, C. Age-dependent sexual selection in bighorn rams. Proc. R. Soc. Lond. B 269, 165–172 (2002).

    Article  CAS  Google Scholar 

  14. 14.

    Kruuk, E. B. et al. Antler size in red deer: heritability and selection but no evolution. Evolution 56, 1683–1695 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Goss, R. J. Deer Antlers: Regeneration, Function and Evolution (Academic, New York, NY, 1983).

  16. 16.

    Lincoln, G. A. Biology of antlers. J. Zool. 226, 517–528 (1992).

    Article  Google Scholar 

  17. 17.

    Price, J. & Allen, S. Exploring the mechanisms regulating regeneration of deer antlers. Phil. Trans. R. Soc. Lond. B 359, 809–822 (2004).

    Article  CAS  Google Scholar 

  18. 18.

    Clutton-Brock, T. H., Albon, S. D., Gibson, R. M. & Guinness, F. E. The logical stag: adaptive aspects of fighting in red deer (Cervus elaphus L.). Anim. Behav. 27, 211–225 (1979).

    Article  Google Scholar 

  19. 19.

    Malo, A. F., Roldan, E. R. S., Garde, J., Soler, A. J. & Gomendio, M. Antlers honestly advertise sperm production and quality. Proc. R. Soc. Lond. B 272, 149–157 (2005).

    Article  Google Scholar 

  20. 20.

    Vanpé, C. et al. Antler size provides an honest signal of male phenotypic quality in roe deer. Am. Nat. 169, 481–493 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Clements, M. N., Clutton-Brock, T. H., Albon, S. D., Pemberton, J. M. & Kruuk, L. E. B. Getting the timing right: antler growth phenology and sexual selection in a wild red deer population. Oecologia 164, 357–368 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Bartoš, L. The date of antler casting, age and social hierarchy relationships in the red deer stag. Behav. Processes 5, 293–301 (1980).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bowyer, R. T. Antler characteristics as related to social status of male southern mule deer. Southwest. Nat. 31, 289–298 (1986).

    Article  Google Scholar 

  24. 24.

    Van Ballenberghe, V. in Antler Development in Cervidae (ed. Brown, R.D.) 37–48 (Caesar Kleberg Wildlife Research Institute, Kingsville, TX, 1983).

  25. 25.

    Chapman, D. I. Antlers–bones of contention. Mamm. Rev. 5, 121–172 (1975).

    Article  Google Scholar 

  26. 26.

    Polziehn, R. O. & Strobeck, C. A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Mol. Phylogenet. Evol. 22, 342–356 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Meiri, M. et al. Subspecies dynamics in space and time: a study of the red deer complex using ancient and modern DNA and morphology. J. Biogeogr. 45, 367–380 (2018).

    Article  Google Scholar 

  28. 28.

    Allen, B. J. & Levinton, J. S. Costs of bearing a sexually selected ornamental weapon in a fiddler crab. Funct. Ecol. 21, 154–161 (2007).

    Article  Google Scholar 

  29. 29.

    Clutton-Brock, T. H. The functions of antlers. Behaviour 79, 108–125 (1982).

    Article  Google Scholar 

  30. 30.

    Bobek, B., Perzanowski, K. & Weiner, J. Energy expenditure for reproduction in male red deer. J. Mammal. 71, 230–232 (1990).

    Article  Google Scholar 

  31. 31.

    Rughetti, M. & Festa-Bianchet, M. Seasonal changes in sexual size dimorphism in northern chamois. J. Zool. 284, 257–264 (2011).

    Article  Google Scholar 

  32. 32.

    Geist, V. New evidence of high frequency of antler wounding in cervids. Can. J. Zool. 64, 380–384 (1986).

    Article  Google Scholar 

  33. 33.

    Owen-Smith, N. Changing vulnerability to predation related to season and sex in an African ungulate assemblage. Oikos 117, 602–610 (2008).

    Article  Google Scholar 

  34. 34.

    Packer, C. Sexual dimorphism: the horns of African antelopes. Science 221, 1191–1193 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Clements, H. S., Tambling, C. J. & Kerley, G. I. H. Prey morphology and predator sociality drive predator prey preferences. J. Mammal. 97, 919–927 (2016).

    Article  Google Scholar 

  36. 36.

    Peterson, R. O. Wolf Ecology and Prey Relationships on Isle Royale (US Government Publishing Office, Washington, DC, 1977).

  37. 37.

    Fitzgibbon, C. D. & Fanshawe, J. H. The condition and age of Thomson’s gazelles killed by cheetahs and wild dogs. J. Zool. 218, 99–107 (1989).

    Article  Google Scholar 

  38. 38.

    Sinclair, A. R. E. & Arcese, P. Population consequences of predation-sensitive foraging: the Serengeti wildebeest. Ecology 76, 882–891 (1995).

    Article  Google Scholar 

  39. 39.

    Husseman, J. S. et al. Assessing differential prey selection patterns between two sympatric large carnivores. Oikos 101, 591–601 (2003).

    Article  Google Scholar 

  40. 40.

    Sinclair, A. R.., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Wright, G. J., Peterson, R. O., Smith, D. W. & Lemke, T. O. Selection of northern Yellowstone elk by gray wolves and hunters. J. Wildl. Manage. 70, 1070–1078 (2006).

    Article  Google Scholar 

  42. 42.

    Metz, M. C., Smith, D. W., Vucetich, J. A., Stahler, D. R. & Peterson, R. O. Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park. J. Anim. Ecol. 81, 553–563 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Tallian, A. et al. Predator foraging response to a resurgent dangerous prey. Funct. Ecol. 31, 1418–1429 (2017).

    Article  Google Scholar 

  44. 44.

    Smith, D. W., Drummer, T. D., Murphy, K. M., Guernsey, D. S. & Evans, S. B. Winter prey selection and estimation of wolf kill rates in Yellowstone National Park, 1995–2000. J. Wildl. Manage. 68, 153–166 (2004).

    Article  CAS  Google Scholar 

  45. 45.

    Huggard, D. J. Prey selectivity of wolves in Banff National Park. II. Age, sex, and condition of elk. Can. J. Zool. 71, 140–147 (1993).

    Article  Google Scholar 

  46. 46.

    Clutton-Brock, T. H., Guinness, F. E. & Albon, S. D. Red Deer: Behavior and Ecology of Two Sexes (Univ. Chicago Press, Chicago, IL, 1982).

  47. 47.

    Neiland, K. A. Weight of dried marrow as indicator of fat in caribou femurs. J. Wildl. Manage. 34, 904–907 (1970).

    Article  Google Scholar 

  48. 48.

    Cook, R. C. et al. Development of predictive models of nutritional condition for Rocky Mountain elk. J. Wildl. Manage. 65, 973–987 (2001).

    Article  Google Scholar 

  49. 49.

    Watson, A. Climate and the antler-shedding and performance of red deer in north-east Scotland. J. Appl. Ecol. 8, 53–67 (1971).

    Article  Google Scholar 

  50. 50.

    Yoccoz, N. G., Mysterud, A., Langvatn, R. & Stenseth, N. C. Age- and density-dependent reproductive effort in male red deer. Proc. R. Soc. Lond. B 269, 1523–1528 (2002).

    Article  Google Scholar 

  51. 51.

    Nussey, D. H., Pemberton, J., Donald, A. & Kruuk, L. E. B. Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus). Heredity 97, 56–65 (2006).

    Article  CAS  Google Scholar 

  52. 52.

    Boitani, L. in Wolves: Behavior, Ecology, and Conservation (eds Mech, L. D. & Boitaini, L.) 317–340 (Univ. Chicago Press, Chicago, IL, 2003).

  53. 53.

    Jȩdrzejewski, W. et al. Prey selection and predation by wolves in Białowieża Primeval Forest, Poland. J. Mammal. 81, 197–212 (2000).

    Article  Google Scholar 

  54. 54.

    Gazzola, A. et al. Predation by wolves (Canis lupus) on wild and domestic ungulates of the western Alps, Italy. J. Zool. 266, 205–213 (2005).

    Article  Google Scholar 

  55. 55.

    Pole, A., Gordon, I. J. & Gorman, M. L. African wild dogs test the ‘survival of the fittest’ paradigm. Proc. R. Soc. Lond. B 270, S57 (2003).

    Article  Google Scholar 

  56. 56.

    Atwood, T. C., Gese, E. M. & Kunkel, K. E. Comparative patterns of predation by cougars and recolonizing wolves in Montana’s Madison Range. J. Wildl. Manage. 71, 1098–1106 (2007).

    Article  Google Scholar 

  57. 57.

    Jędrzejewski, W. et al. Kill rates and predation by wolves on ungulate populations in Białowieża Primeval Forest (Poland). Ecology 83, 1341–1356 (2002).

    Google Scholar 

  58. 58.

    Carbyn, L. N. Wolf predation on elk in Riding Mountain National Park, Manitoba. J. Wildl. Manage. 47, 963–976 (1983).

    Article  Google Scholar 

  59. 59.

    Mech, L. D., Smith, D. W., MacNulty, D. R. & Landis, R. K. Wolves on the Hunt: the Behavior of Wolves Hunting Wild Prey (Univ. Chicago Press, Chicago, IL, 2015).

  60. 60.

    Bergerud, A. The annual antler cycle in Newfoundland caribou. Can. Field Nat. 90, 449–463 (1976).

    Google Scholar 

  61. 61.

    Seip, D. R. Factors limiting woodland caribou populations and their interrelationships with wolves and moose in southeastern British Columbia. Can. J. Zool. 70, 1494–1503 (1992).

    Article  Google Scholar 

  62. 62.

    Caro, T. M., Graham, C. M., Stoner, C. J. & Flores, M. M. Correlates of horn and antler shape in bovids and cervids. Behav. Ecol. Sociobiol. 55, 32–41 (2003).

    Article  Google Scholar 

  63. 63.

    MacNulty, D. R., Mech, L. D. & Smith, D. W. A proposed ethogram of large-carnivore predatory behavior, exemplified by the wolf. J. Mammal. 88, 595–605 (2007).

    Article  Google Scholar 

  64. 64.

    Metz, M. C., Vucetich, J. A., Smith, D. W., Stahler, D. R. & Peterson, R. O. Effect of sociality and season on gray wolf (Canis lupus) foraging behavior: implications for estimating summer kill rate. PLoS ONE 6, e17332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Sikes, R. S., Gannon, W. L & Animal Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).

    Article  Google Scholar 

  66. 66.

    Mautz, W. W. Sledding on a bushy hillside: the fat cycle in deer. Wildl. Soc. Bull. 6, 88–90 (1978).

    Google Scholar 

  67. 67.

    Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69 (2009).

    Article  Google Scholar 

  68. 68.

    MacNulty, D. R., Smith, D. W., Mech, L. D., Vucetich, J. A. & Packer, C. Nonlinear effects of group size on the success of wolves hunting elk. Behav. Ecol. 23, 75–82 (2012).

    Article  Google Scholar 

  69. 69.

    Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package v.2.1.1 (2017); https://cran.r-project.org/web/packages/AICcmodavg/index.html.

  70. 70.

    Schratz, P. oddsratio: Odds Ratio Calculation for GAM(M)s & GLM(M)s. R package v.1.0.2 (2017); https://cran.r-project.org/web/packages/oddsratio/index.html.

  71. 71.

    Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manage. 74, 1175–1178 (2010).

    Article  Google Scholar 

  72. 72.

    Manly, B. F., McDonald, L., Thomas, D., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies 2nd edn (Springer Science & Business Media, Berlin, 2002).

  73. 73.

    Wockner, G., Singer, F., Coughenour, M., & Farnes, P. Yellowstone Snow Model. Colorado State Univ., Fort Collins, CO (2006).

Download references

Acknowledgements

We thank all Yellowstone Wolf Project field technicians and Gallatin Flying Services for data collection, and E. Stahler, K. Cassidy, K. Koitzsch and J. Jones for discussions. This work was supported by Yellowstone Forever (Tapeats Fund, anonymous donor, Frank and Kay Yeager, many individual donors), National Science Foundation (NSF) Long Term Research in Environmental Biology grants DEB-0613730 (D.W.S.), DEB-1245373 (D.R.S., D.R.M. and D.W.S.), DEB-1556248 (M.H.) and NSF grant OEI-0919781 (D.J.E.). M.C.M. was also supported by the Wesley M. Dixon Graduate Fellowship and Bertha Morton Scholarship from the University of Montana and a Graduate Enhancement Fellowship from the Montana Institute on Ecosystems funded through NSF Established Program to Stimulate Competitive Research.

Author information

Affiliations

Authors

Contributions

M.C.M. conceived of the study. M.C.M., D.R.S., D.R.M. and D.W.S. collected the data and coordinated the study. M.C.M. and M.H. developed the methods and M.C.M. analysed the data. M.C.M., D.J.E. and M.H. wrote the paper with input from the other authors.

Corresponding author

Correspondence to Matthew C. Metz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Tables 1–3, Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Metz, M.C., Emlen, D.J., Stahler, D.R. et al. Predation shapes the evolutionary traits of cervid weapons. Nat Ecol Evol 2, 1619–1625 (2018). https://doi.org/10.1038/s41559-018-0657-5

Download citation

Further reading