Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Function and functional redundancy in microbial systems

Abstract

Microbial communities often exhibit incredible taxonomic diversity, raising questions regarding the mechanisms enabling species coexistence and the role of this diversity in community functioning. On the one hand, many coexisting but taxonomically distinct microorganisms can encode the same energy-yielding metabolic functions, and this functional redundancy contrasts with the expectation that species should occupy distinct metabolic niches. On the other hand, the identity of taxa encoding each function can vary substantially across space or time with little effect on the function, and this taxonomic variability is frequently thought to result from ecological drift between equivalent organisms. Here, we synthesize the powerful paradigm emerging from these two patterns, connecting the roles of function, functional redundancy and taxonomy in microbial systems. We conclude that both patterns are unlikely to be the result of ecological drift, but are inevitable emergent properties of open microbial systems resulting mainly from biotic interactions and environmental and spatial processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene-centric structure of microbial communities can decouple from taxonomic composition.
Fig. 2: Phylogenetic conservatism varies between functions and between clades.
Fig. 3: Functional redundancy in methanogenic communities (schematic illustration).

Similar content being viewed by others

References

  1. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Gans, J., Wolinsky, M. & Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Powell, S. et al. eggnog v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 42, D231–D239 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. O'Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth's biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Raes, J., Letunic, I., Yamada, T., Jensen, L. J. & Bork, P. Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data. Mol. Syst. Biol. 7, 473 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reed, D. C., Algar, C. K., Huber, J. A. & Dick, G. J. Gene-centric approach to integrating environmental genomics and biogeochemical models. Proc. Natl Acad. Sci. USA 111, 1879–1884 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Louca, S. et al. Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone. Proc. Natl Acad. Sci. USA 113, E5925–E5933 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Fernández, A. et al. How stable is stable? Function versus community composition. Appl. Environ. Microbiol. 65, 3697–3704 (1999).

    PubMed  PubMed Central  Google Scholar 

  11. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. Bacterial community assembly based on functional genes rather than species. Proc. Natl Acad. Sci. USA 108, 14288–14293 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nelson, M. B., Martiny, A. C. & Martiny, J. B. H. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl Acad. Sci. USA 113, 8033–8040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Louca, S. et al. High taxonomic variability despite stable functional structure across microbial communities. Nat. Ecol. Evol. 1, 0015 (2016).

    Article  Google Scholar 

  15. Wittebolle, L., Vervaeren, H., Verstraete, W. & Boon, N. Quantifying community dynamics of nitrifiers in functionally stable reactors. Appl. Environ. Microbiol. 74, 286–293 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Wells, G. F. et al. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of crenarchaea. Environ. Microbiol. 11, 2310–2328 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Vanwonterghem, I., Jensen, P. D., Rabaey, K. & Tyson, G. W. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion. Environ. Microbiol. 18, 3144–3158 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Kaewpipat, K. & Grady, C. Microbial population dynamics in laboratory-scale activated sludge reactors. Water Sci. Technol. 46, 19–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, X. et al. Bacterial community dynamics in a functionally stable pilot-scale wastewater treatment plant. Bioresour. Technol. 102, 2352–2357 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez-Gonzalez, N., Huber, J. A. & Vallino, J. J. Microbial communities are well adapted to disturbances in energy input. mSystems 1, e00117-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sheng, Y. et al. Geochemical and temporal influences on the enrichment of acidophilic iron-oxidizing bacterial communities. Appl. Environ. Microbiol. 82, 3611–3621 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aguilar, D., Aviles, F. X., Querol, E. & Sternberg, M. J. E. Analysis of phenetic trees based on metabolic capabilites across the three domains of life. J. Mol. Biol. 340, 491–512 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. MBio 3, e00036–12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. David, L. A. & Alm, E. J. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469, 93–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Hehemann, J. H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Welch, R. A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 99, 17020–17024 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martiny, A. C., Treseder, K. & Pusch, G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 7, 830–838 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Whitman, W. B. (ed.) Bergey's Manual of Systematics of Archaea and Bacteria.(John Wiley & Sons, Hoboken, 2015).

  32. Canfield, D. E. & Thamdrup, B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology 7, 385–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Reed, D. C. et al. Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents. ISME J. 9, 1857–1869 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Graham, E. B. et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol. 7, 214 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I. & Glover, L. A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7, 301–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Langenheder, S., Lindström, E. S. & Tranvik, L. J. Weak coupling between community composition and functioning of aquatic bacteria. Limnol. Oceanogr. 50, 957–967 (2005).

    Article  Google Scholar 

  37. Langenheder, S., Lindström, E. S. & Tranvik, L. J. Structure and function of bacterial communities emerging from different sources under identical conditions. Appl. Environ. Microbiol. 72, 212–220 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peter, H. et al. Function-specific response to depletion of microbial diversity. ISME J. 5, 351–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Jurburg, S. D. & Salles, J. F. in Biodiversity in Ecosystems - Linking Structure and Function (eds Lo, Y.-H., Blanco, J. A. & Roy, S.) Ch. 2, 29–49 (INTECH, 2015).

  40. Louca, S. & Doebeli, M. Taxonomic variability and functional stability in microbial communities infected by phages. Environ. Microbiol. 19, 3863–3878 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Hawley, A. K., Brewer, H. M., Norbeck, A. D., Paša-Tolić, L. & Hallam, S. J. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc. Natl Acad. Sci. USA 111, 11395–11400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the holy grail. Funct. Ecol. 16, 545–556 (2002).

    Article  Google Scholar 

  43. Tully, B., Wheat, C. G., Glazer, B. T. & Huber, J. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME J. 12, 1–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol 13, 133–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  48. Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, Princeton, 1982).

  49. Freter, R., Brickner, H., Botney, M., Cleven, D. & Aranki, A. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect. Immun. 39, 676–685 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yawata, Y. et al. Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc. Natl Acad. Sci. USA 111, 5622–5627 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sommer, U. The paradox of the plankton: Fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnol. Oceanogr. 29, 633–636 (1984).

    Article  Google Scholar 

  53. Moore, C. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article  CAS  Google Scholar 

  54. Wildschutte, H., Wolfe, D. M., Tamewitz, A. & Lawrence, J. G. Protozoan predation, diversifying selection, and the evolution of antigenic diversity in salmonella. Proc. Natl Acad. Sci. USA 101, 10644–10649 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 7, 828–836 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Bohannan, B. J. M., Kerr, B., Jessup, C. M., Hughes, J. B. & Sandvik, G. Trade-offs and coexistence in microbial microcosms. Antonie Leeuwenhoek 81, 107–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Chesson, P. & Kuang, J. J. The interaction between predation and competition. Nature 456, 235–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Cordero, O. X. & Polz, M. F. Explaining microbial genomic diversity in light of evolutionary ecology. Nat. Rev. Microbiol. 12, 263–273 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Czárán, T. L., Hoekstra, R. F. & Pagie, L. Chemical warfare between microbes promotes biodiversity. Proc. Natl Acad. Sci. USA 99, 786–790 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hutchinson, G. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article  Google Scholar 

  62. Plichta, D. R. et al. Transcriptional interactions suggest niche segregation among microorganisms in the human gut. Nat. Microbiol. 1, 16152 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Loreau, M. Does functional redundancy exist? Oikos 104, 606–611 (2004).

    Article  Google Scholar 

  64. Curtis, T. P. & Sloan, W. T. Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr. Opin. Microbiol. 7, 221–226 (2004).

    Article  PubMed  Google Scholar 

  65. Konopka, A., Lindemann, S. & Fredrickson, J. Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J. 9, 1488–1495 (2015).

    Article  PubMed  Google Scholar 

  66. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography Vol. 32 (Princeton Univ. Press, Princeton, 2001).

  67. Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).

    Article  PubMed  Google Scholar 

  68. Sloan, W. T., Woodcock, S., Lunn, M., Head, I. M. & Curtis, T. P. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb. Ecol. 53, 443–455 (2007).

    Article  PubMed  Google Scholar 

  69. Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C. & Fitter, A. H. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 4, 337–345 (2009).

    Article  PubMed  Google Scholar 

  71. Curtis, T., Polchan, M., Baptista, J., Davenport, R. & Sloan, W. Microbial community assembly, theory and rare functions. Front. Microbiol. 4, 68 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Woodcock, S. et al. Neutral assembly of bacterial communities. FEMS Microbiol. Ecol. 62, 171–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Woodcock, S. & Sloan, W. T. Biofilm community succession: a neutral perspective. Microbiology 163, 664–668 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Ayarza, J. M. & Erijman, L. Balance of neutral and deterministic components in the dynamics of activated sludge floc assembly. Microb. Ecol. 61, 486–495 (2010).

    Article  PubMed  Google Scholar 

  75. Ofiţeru, I. D. et al. Combined niche and neutral effects in a microbial wastewater treatment community. Proc. Natl Acad. Sci. USA 107, 15345–15350 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Stegen, J. C., Lin, X., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Frossard, A., Gerull, L., Mutz, M. & Gessner, M. O. Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors. ISME J. 6, 680–691 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Lande, R., Engen, S. & Sæther, B. Stochastic Population Dynamics in Ecology and Conservation (Oxford Univ. Press, Oxford, 2003).

  79. Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    Article  PubMed  Google Scholar 

  80. Krakat, N., Westphal, A., Schmidt, S. & Scherer, P. Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl. Environ. Microbiol. 76, 1842–1850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ohtsubo, S. et al. Comparison of acetate utilization among strains of an aceticlastic methanogen. Methanothrix soehngenii. Appl. Environ. Microbiol. 58, 703–705 (1992).

    CAS  PubMed  Google Scholar 

  82. Li, L. & Ma, Z. S. Testing the neutral theory of biodiversity with human microbiome datasets. Sci. Rep. 6, 31448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dini-Andreote, F., Stegen, J. C., van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Albright, M. B. N. & Martiny, J. B. H. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 12, 296–299 (2018).

    Article  PubMed  Google Scholar 

  85. Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Martiny, J. B. H., Eisen, J. A., Penn, K., Allison, S. D. & Horner-Devine, M. C. Drivers of bacterial β-diversity depend on spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. A taxa–area relationship for bacteria. Nature 432, 750–753 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Vanwonterghem, I. et al. Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. ISME J. 8, 2015–2028 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shapiro, O. H. & Kushmaro, A. Bacteriophage ecology in environmental biotechnology processes. Curr. Opin. Biotechnol. 22, 449–455 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol. 11, e1001490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Callahan, B. J., Fukami, T. & Fisher, D. S. Rapid evolution of adaptive niche construction in experimental microbial populations. Evolution 68, 3307–3316 (2014).

    Article  PubMed  Google Scholar 

  92. Graham, D. W. et al. Experimental demonstration of chaotic instability in biological nitrification. ISME J. 1, 385–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Fukami, T., Martijn Bezemer, T., Mortimer, S. R. & Putten, W. H. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8, 1283–1290 (2005).

    Article  Google Scholar 

  94. McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Pennell, F. Doolittle, A. C. Martiny and I. Rubin for discussions and for participation at a workshop from which this Perspective emerged. We thank the Canadian Institute for Ecology and Evolution (CIEE) for financial support of all authors, by means of a Thematic Working Group grant on the ‘evolution of microbial metabolic and genomic diversity at multiple scales’. We thank the Biodiversity Research Centre and the Adapting Biosystems programme, University of British Columbia, for financial support, and K. Beall for logistical support. S.L. was supported by an NSERC grant and a postdoctoral fellowship from the Biodiversity Research Centre, UBC. J.A.H. was supported by the NSF Center for Dark Energy Biosphere Investigations (OCE-0939564).

Author information

Authors and Affiliations

Authors

Contributions

S.L., L.W.P. and M.D. organized the workshop from which this Perspective emerged. S.L. performed the data analyses. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Stilianos Louca.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Table 1, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louca, S., Polz, M.F., Mazel, F. et al. Function and functional redundancy in microbial systems. Nat Ecol Evol 2, 936–943 (2018). https://doi.org/10.1038/s41559-018-0519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0519-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology