Dinosaurs reveal the geographical signature of an evolutionary radiation

Subjects

Abstract

Dinosaurs dominated terrestrial ecosystems across the globe for over 100 million years and provide a classic example of an evolutionary radiation. However, little is known about how these animals radiated geographically to become globally distributed. Here, we use a biogeographical model to reconstruct the dinosaurs’ ancestral locations, revealing the spatial mechanisms that underpinned this 170-million-year-long radiation. We find that dinosaurs spread rapidly initially, followed by a significant continuous and gradual reduction in their speed of movement towards the Cretaceous/Tertiary boundary (66 million years ago). This suggests that the predominant mode of dinosaur speciation changed through time with speciation originally largely driven by geographical isolation—when dinosaurs speciated more, they moved further. This was gradually replaced by increasing levels of sympatric speciation (species taking advantage of ecological opportunities within their existing environment) as terrestrial space became a limiting factor. Our results uncover the geographical signature of an evolutionary radiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Six reconstructed paths from the dinosaurian root node (black circle) to the fossilized species (black square).
Fig. 2
Fig. 3

References

  1. 1.

    Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity. Biol. Lett. 4, 733–736 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. Superiority, competition and opportunism in the evolutionary radiation of dinosaurs. Science 321, 1485–1488 (2008).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of years before their extinction. Proc. Natl. Acad. Sci. USA 113, 5036–5040 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Sereno, P. C. The origin and evolution of dinosaurs. Annu. Rev. Earth Planet. Sci. 25, 435–489 (1997).

    CAS  Article  Google Scholar 

  5. 5.

    Martinez, R. N. et al. A basal dinosaur from the dawn of the dinosaur era in Southwestern Pangaea. Science 331, 206–210 (2011).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Langer, M. C., Ezcurra, M. D., Bittencourt, J. S. & Novas, F. E. The origin and early evolution of dinosaurs. Biol. Rev. 85, 55–110 (2010).

    Article  PubMed  Google Scholar 

  7. 7.

    Brusatte, S. L. et al. The origin and early radiation of dinosaurs. Earth Sci. Rev. 101, 68–100 (2010).

    Article  Google Scholar 

  8. 8.

    Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS. Biol. 12, e1001853 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bouckaert, R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ 4, e2406 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    McAllister Rees, P., Noto, C. R., Parrish, J. M. & Parrish, J. T. Late Jurassic climates, vegetation, and dinosaur distributions. J. Geol. 112, 643–653 (2004).

    Article  Google Scholar 

  12. 12.

    Ezcurra, M. D. Biogeography of Triassic tetrapods: evidence for provincialism and driven sympatric cladogenesis in the early evolution of modern tetrapod lineages. Proc. R. Soc. B 277, 2547–2552 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Mannion, P. D. et al. A temperate palaeodiversity peak in Mesozoic dinosaurs and evidence for Late Cretaceous geographical partitioning. Glob. Ecol. Biogeogr. 21, 898–908 (2012).

    Article  Google Scholar 

  14. 14.

    Noto, C. R. & Grossman, A. Broad-scale patterns of late jurassic dinosaur paleoecology. PLoS. One 5, e12553 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Brusatte, S. L. Dinosaur Paleobiology Vol. 2 (Wiley, Hoboken, 2012).

  16. 16.

    Herman, A. B., Spicer, R. A. & Spicer, T. E. V. Environmental constraints on terrestrial vertebrate behaviour and reproduction in the high Arctic of the Late Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 317–338 (2016).

    Article  Google Scholar 

  17. 17.

    Longrich, N. R. A ceratopsian dinosaur from the Late Cretaceous of eastern North America, and implications for dinosaur biogeography. Cretac. Res. 57, 199–207 (2016).

    Article  Google Scholar 

  18. 18.

    Longrich, N. R. The horned dinosaurs Pentaceratops and Kosmoceratops from the upper Campanian of Alberta and implications for dinosaur biogeography. Cretac. Res. 51, 292–308 (2014).

    Article  Google Scholar 

  19. 19.

    Wiens, J. J. The causes of species richness patterns across space, time, and clades and the role of “ecological limits”. Q. Rev. Biol. 86, 75–96 (2011).

    Article  PubMed  Google Scholar 

  20. 20.

    Haq, B. U., Hardenbol, J. & Vail, P. R. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–1167 (1987).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, New York, 1944).

  22. 22.

    Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, New York, 2000).

  23. 23.

    Venditti, C., Meade, A. & Pagel, M. Phylogenies reveal new interpretation of speciation and the Red Queen. Nature 463, 349–352 (2010).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Seehausen, O. African cichlid fish: a model system in adaptive radiation research. Proc. R. Soc. B 273, 1987–1998 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Mahler, D. L., Revell, L. J., Glor, R. E. & Losos, J. B. Ecological opportunity and the rate of morphological evolution in the diversification of greater Antillean anoles. Evolution 64, 2731–2745 (2010).

    Article  PubMed  Google Scholar 

  26. 26.

    Grant, P. R. Speciation and the adaptive radiation of Darwin’s finches: the complex diversity of Darwin’s finches may provide a key to the mystery of how intraspecific variation is transformed into interspecific variation. Am. Sci. 69, 653–663 (1981).

    Google Scholar 

  27. 27.

    Osborn, H. F. The geological and faunal relations of Europe and America during the Tertiary period and the theory of the successive invasions of an African fauna. Science 11, 561–574 (1900).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Foth, C., Brusatte, S. L. & Butler, R. J. Do different disparity proxies converge on a common signal? Insights from the cranial morphometrics and evolutionary history of Pterosauria (Diapsida: Archosauria). J. Evolut. Biol. 25, 904–915 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Erwin, D. H. A preliminary classification of evolutionary radiations. Hist. Biol. 6, 133–147 (1992).

    Article  Google Scholar 

  30. 30.

    Losos, J. B. & Miles, D. B. Testing the hypothesis that a clade has adaptively radiated: Iguanid lizard clades as a case study. Am. Nat. 160, 147–157 (2002).

    Article  PubMed  Google Scholar 

  31. 31.

    Abe, F. R. & Lieberman, B. S. The nature of evolutionary radiations: a case study involving Devonian Trilobites. Evol. Biol. 36, 225–234 (2009).

    Article  Google Scholar 

  32. 32.

    Rundell, R. J. & Price, T. D. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol. Evol. 24, 394–399 (2009).

    Article  PubMed  Google Scholar 

  33. 33.

    Simões, M. et al. The evolving theory of evolutionary radiations. Trends Ecol. Evol. 31, 27–34 (2016).

    Article  PubMed  Google Scholar 

  34. 34.

    Hone, D. W. E., Naish, D. & Cuthill, I. C. Does mutual sexual selection explain the evolution of head crests in pterosaurs and dinosaurs? Lethaia 45, 139–156 (2012).

    Article  Google Scholar 

  35. 35.

    Padian, K. & Horner, J. R. The evolution of ‘bizarre structures’ in dinosaurs: biomechanics, sexual selection, social selection or species recognition? J. Zool. 283, 3–17 (2011).

    Article  Google Scholar 

  36. 36.

    Higashi, M., Takimoto, G. & Yamamura, N. Sympatric speciation by sexual selection. Nature 402, 523–526 (1999).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Servedio, M. R. & Boughman, J. W. The role of sexual selection in local adaptation and speciation.Annu. Rev. Ecol. Evol. Syst. 48, 85–109 (2017).

    Article  Google Scholar 

  38. 38.

    EarthByte Project. GPlates 1.5. http://www.gplates.org (2015).

  39. 39.

    R Core Team. R: A language and environment for statistical computing. http://www.R-project.org (R Foundation for Statistical Computing, Vienna 2016).

  40. 40.

    Pagel, M. Inferring evolutionary processes from phylogenies. Zool. Scr. 26, 331–348 (1997).

    Article  Google Scholar 

  41. 41.

    Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

    Article  Google Scholar 

  42. 42.

    Lawing, A. M. & Matzke, N. J. Conservation paleobiology needs phylogenetic methods. Ecography 37, 1109–1122 (2014).

    Google Scholar 

  43. 43.

    Walimbe, A. M., Lotankar, M., Cecilia, D. & Cherian, S. S. Global phylogeography of Dengue type 1 and 2 viruses reveals the role of India. Infect. Genet. Evol. 22, 30–39 (2014).

    Article  PubMed  Google Scholar 

  44. 44.

    Kaliszewska, Z. A. et al. When caterpillars attack: biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae). Evol. Int. J. Org. Evol. 69, 571–588 (2015).

    Article  Google Scholar 

  45. 45.

    Wang, N., Kimball, R. T., Braun, E. L., Liang, B. & Zhang, Z. Ancestral range reconstruction of Galliformes: the effects of topology and taxon sampling. J. Biogeogr. 44, 122–135 (2017).

    Article  Google Scholar 

  46. 46.

    Fernando, S. W., Peterson, A. T. & Li, S.-H. Reconstructing the geographic origin of the New World jays. Neotrop. Biodivers. 3, 80–92 (2017).

    Article  Google Scholar 

  47. 47.

    Lemmon, A. R. & Lemmon, E. M. A likelihood framework for estimating phylogeographic history on a continuous landscape. Syst. Biol. 57, 544–561 (2008).

    Article  PubMed  Google Scholar 

  48. 48.

    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Walker, R. S. & Ribeiro, L. A. Bayesian phylogeography of the Arawak expansion in lowland South America. Proc. R. Soc. B 278, 2562–2567 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bouckaert, R. et al. Mapping the origins and expansion of the Indo-European language family. Science 337, 957–960 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Grollemund, R. et al. Bantu expansion shows that habitat alters the route and pace of human dispersals. Proc. Natl. Acad. Sci. USA 112, 13296–13301 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).

    Article  PubMed  Google Scholar 

  53. 53.

    Hofmann-Wellenhof, B., Lichtenegger, H. & Collins, J. Global Positioning System: Theory and Practice (Springer, Vienna, 1992).

  54. 54.

    Jones, A. Where in the World are We? Version 1.7 (Department for Environment, Heritage and Aboriginal Affairs, with the South Australian Spatial Information Committee, Government of South Australia, Adelaide, South Australia, 1999).

  55. 55.

    Quintero, I., Keil, P., Jetz, W. & Crawford, F. W. Historical biogeography using species geographical ranges. Syst. Biol. 64, 1059–1073 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Elliot, M. G. & Mooers, A. O. Inferring ancestral states without assuming neutrality or gradualism using a stable model of continuous character evolution. Evol. Biol. 14, 226 (2014).

    Google Scholar 

  57. 57.

    Hijmans, R. geosphere: Spherical Trigonometry. R package v.1.3-11. http://CRAN.R-project.org/package=geosphere (2014).

  58. 58.

    Dunhill, A. M., Bestwick, J., Narey, H. & Sciberras, J. Dinosaur biogeographical structure and Mesozoic continental fragmentation: a network-based approach. J. Biogeogr. 43, 1691–1704 (2016).

    Article  Google Scholar 

  59. 59.

    Alroy, J. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53, 1211–1235 (2010).

    Article  Google Scholar 

  60. 60.

    Barrett, P. M., McGowan, A. J. & Page, V. Dinosaur diversity and the rock record. Proc. R. Soc. B 276, 2667–2674 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Upchurch, P., Mannion, P. D., Benson, R. B. J., Butler, R. J. & Carrano, M. T. Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. Geol. Soc. 358, 209–240 (2011).

    Article  Google Scholar 

  62. 62.

    Ganzach, Y. Misleading interaction and curvilinear terms. Psychol. Methods 2, 235 (1997).

    Article  Google Scholar 

  63. 63.

    JMP v.7 (SAS Institute, Cary, NC, 2007).

Download references

Acknowledgements

We thank M. Benton and M. Sakamoto for help with classifying dinosaur diet and gait, and J. Czaplewski for help with obtaining the palaeomaps. We are also grateful to J. Baker, H. Ferguson-Gow, J. Avaria-Llautureo, S. Branford, L. Johnson, I. Siveroni and M. Pagel for helpful discussion. This work is supported by The Leverhulme Trust (RPG-2013-185 and RPG-2017-071) and the BBSRC (BB/L018594/1).

Author information

Affiliations

Authors

Contributions

All authors contributed to all aspects of this work.

Corresponding author

Correspondence to Chris Venditti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

Supplementary information

Supplementary Table 1

Table containing the diet and gait classifications for each dinosaur species (n = 595) used in the phylogenetic regression analyses testing factors determining dinosaur movement

Life Sciences Reporting Summary

Supplementary Figures

Supplementary Figure 1. The importance of using coordinates that are in both the right geographic and temporal context. Supplementary Figure 2. A representation of the relationships between example species A and B. Supplementary Figure 3. The importance of including all of the available fossil occurrences as data at the tips of the phylogeny used to estimate ancestral locations (green squares).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Donovan, C., Meade, A. & Venditti, C. Dinosaurs reveal the geographical signature of an evolutionary radiation. Nat Ecol Evol 2, 452–458 (2018). https://doi.org/10.1038/s41559-017-0454-6

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing